Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 106(3): 2137-2152, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36710184

RESUMEN

Study objectives were to evaluate the effects of feeding rumen-protected Met (RPM) in pre- and postpartum total mixed rations (TMR) on health disorders and the interactions of health disorders with lactation and reproductive performance. Multiparous Holstein cows [470; 235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled at approximately 4 wk before parturition and housed in close-up dry cow (n = 6) and replicated lactation pens (n = 16). Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): (1) control (CON): basal diet = 2.30% and 2.09% Met as % of metabolizable protein (MP) (UW) or 2.22% and 2.19% Met as % of MP (CU); (2) RPM: basal diet fed with RPM with 2.83% and 2.58% Met (Smartamine M, Adisseo Inc.; 12 g prepartum and 27 g postpartum), as % of MP (UW) or 2.85% and 2.65% Met (Smartamine M; 13 g prepartum and 28 g postpartum), as % of MP (CU). Total serum Ca was evaluated at the time of parturition and on d 3 ± 1 postpartum. Daily rumination was monitored from 7 d before parturition until 28 d postpartum. Health disorders were recorded during the experimental period until the time of first pregnancy diagnosis (32 d after timed artificial insemination; 112 ± 3 d in milk). Uterine health was evaluated on d 35 ± 3 postpartum. Time to pregnancy and herd exit were evaluated up to 350 d in milk. Treatment had no effect on the incidence of most health disorders and did not alter daily rumination. Cows fed RPM had reduced subclinical hypocalcemia (13.6 vs. 22%; UW only) on day of parturition relative to CON. Percentage of cows culled (13.1 vs. 19.3%) and hazard of herd exit due to culling [hazard ratio = 0.65, 95% confidence interval (CI): 0.42-1.02] tended to be reduced for cows fed RPM compared with CON. Moreover, cows fed RPM had greater milk protein concentration and protein yield overall, although retrospective analysis indicated that RPM only significantly increased protein yield in the group of cows with one or more health disorders (1.47 vs. 1.40 kg/d), not in cows without health disorders (1.49 vs. 1.46 kg/d) compared with CON. Overall, treatment had no effect on pregnancy per timed artificial insemination; however, among cows with health disorders, those fed RPM had reduced time to pregnancy compared with CON (hazard ratio = 0.71, 95% CI: 0.53-0.96). Thus, except for subclinical hypocalcemia on the day of parturition, feeding RPM in pre- and postpartum TMR did not reduce the incidence of health disorders, but our retrospective analysis indicated that it lessened the negative effects of health disorders on milk protein production and time to pregnancy.


Asunto(s)
Enfermedades de los Bovinos , Hipocalcemia , Embarazo , Femenino , Bovinos , Animales , Metionina/metabolismo , Rumen/metabolismo , Hipocalcemia/veterinaria , Estudios Retrospectivos , Periodo Posparto , Reproducción , Lactancia , Dieta/veterinaria , Proteínas de la Leche/análisis , Racemetionina/metabolismo , Suplementos Dietéticos , Enfermedades de los Bovinos/metabolismo
2.
J Anim Sci ; 100(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35553680

RESUMEN

The first objective was to investigate the effects of feeding rumen-protected methionine (RPM) during a heat stress (HS) challenge on abundance and phosphorylation of mechanistic target of rapamycin (mTOR)-related signaling proteins in mammary gland. The second objective was to investigate how HS and RPM may modulate the response of mammary gland explants to an inflammatory challenge using lipopolysaccharide (LPS). Thirty-two multiparous, lactating Holstein cows (184 ± 59 DIM) were randomly assigned to 1 of 2 environmental treatment groups, and 1 of 2 dietary treatments [TMR with RPM (Smartamine M; Adisseo Inc.; 0.105% DM as top dress) or TMR without RPM (CON)] in a crossover design. There were two periods with two phases per period. In phase 1 (9 d), all cows were in thermoneutral conditions (TN) and fed ad libitum. During phase 2 (9 d), group 1 (n = 16) cows were exposed to HS using electric heat blankets, whereas group 2 cows (n = 16) remained in TN but were pair-fed to HS counterparts to control for DMI decreases associated with HS. After a washout period (14 d), the study was repeated (period 2). Environmental treatments were inverted in period 2 (sequence), whereas dietary treatments remained the same. Mammary tissue was harvested via biopsy at the end of both periods. Tissue was used for protein abundance analysis and also for incubation with 0 or 3 µg/mL of LPS for 2 h and subsequently used for mRNA abundance. Data were analyzed using PROC MIXED in SAS. Analysis of protein abundance data included the effects of diet, environment and their interaction, and period and sequence to account for the crossover design. The explant data model also included the effect of LPS and its interaction with environment and diet. Abundance of phosphorylated mTOR and ratio of phosphorylated eukaryotic translation elongation factor 2 (p-EEF2) to total EEF2 in non-challenged tissue was greater with RPM supplementation (P = 0.04 for both) and in both cases tended to be greater with HS (P = 0.08 for both). Regardless of RPM supplementation, incubation with LPS upregulated mRNA abundance of IL8, IL6, IL1B, CXCL2, TNF, NFKB1, and TLR2 (P < 0.05). An environment × LPS interaction was observed for NFKB1 (P = 0.03); abundance was greater in LPS-treated explants from non-HS compared with HS cows. Abundance of CXCL2, NFKB1, NOS2, NOS1, and SOD2 was lower with HS (P < 0.05). Although LPS did not alter mRNA abundance of the antioxidant transcription factor NFE2L2 (P = 0.59), explants from HS cows had lower abundance of NFE2L2 (P < 0.001) and CUL3 (P = 0.04). Overall, RPM supplementation may alter mTOR activation in mammary tissue. Additionally, although HS reduced explant immune and antioxidant responses, RPM did not attenuate the inflammatory response induced by LPS in vitro.


Heat stress (HS) is an environmental issue worldwide and occurs when animals experience a heat load that exceeds their thermoregulatory capacity. Milk protein synthesis and overall production often decrease when cows are exposed to HS conditions, in part due to lower feed intake and a limit in the mammary supply of amino acids. Increasing post-ruminal supply of methionine to late-lactation cows upregulated abundance of p-mTOR in mammary tissue, providing a link with the greater milk protein production. Exposure of cows to a HS challenge also increased abundance of p-mTOR, but did not alter milk protein suggesting this response might have been associated with synthesis of other proteins. Further work at a translational level is needed to understand potential mechanisms whereby methionine may modulate mammary metabolism during periods of HS.


Asunto(s)
Enfermedades de los Bovinos , Trastornos de Estrés por Calor , Animales , Antioxidantes/metabolismo , Bovinos , Enfermedades de los Bovinos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Trastornos de Estrés por Calor/metabolismo , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Lactancia , Lipopolisacáridos/metabolismo , Metionina/farmacología , Leche/metabolismo , ARN Mensajero/metabolismo , Rumen/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
J Anim Sci ; 99(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741611

RESUMEN

Multiparous, lactating Holstein cows (n = 32) were randomly assigned to one of two dietary treatments [TMR with rumen-protected Met (RPM) or TMR without RPM (CON)], and within each dietary treatment group cows were randomly assigned to one of two environmental treatment groups in a split-plot crossover design. In phase 1 (9 d), all cows were fed ad libitum and in thermoneutral conditions (TN). In phase 2 (9 d), group 1 (n = 16) was exposed to a heat stress (HS) challenge (HSC). Group 2 cows (n = 16) were pair-fed (PFTN) to HSC counterparts and remained in TN. After a 21-d washout period, the study was repeated (period 2) and the environmental treatments were inverted relative to treatments from phase 2 of period 1, while dietary treatments remained the same for each cow. During phase 1, cows in RPM had greater plasma Met concentration compared with cows in CON (59 and 30 µM, respectively; P < 0.001). Cows in PFTN had a greater decrease (P < 0.05) in plasma insulin than cows in HSC at 4 h (-2.7 µIU/mL vs. -0.7 µIU/mL) and 8 h (-7.7 µIU/mL vs. -0.4 µIU/mL) during phase 2. Compared with cows in PFTN, cows in HSC had an increase (P < 0.05) in plasma serum amyloid A (-59 µg/mL vs. +58 µg/mL), serum haptoglobin (-3 µg/mL vs. +33 µg/mL), plasma lipopolysaccharide binding protein (-0.27 and +0.11 µg/mL), and plasma interleukin-1ß (-1.9 and +3.9 pg/mL) during phase 2. In conclusion, HSC elicited immunometabolic alterations; however, there were limited effects of RPM on cows in HSC.


Asunto(s)
Enfermedades de los Bovinos , Trastornos de Estrés por Calor , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Lactancia , Metionina , Leche , Rumen
4.
J Dairy Sci ; 104(7): 7583-7603, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33865588

RESUMEN

Objectives were to evaluate the effect of feeding rumen-protected methionine (RPM) in pre- and postpartum total mix ration (TMR) on lactation performance and plasma AA concentrations in dairy cows. A total of 470 multiparous Holstein cows [235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled approximately 4 wk before parturition, housed in close-up dry cow and replicated lactation pens. Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): UW control (CON) diet = 2.30 and 2.09% of Met as percentage of metabolizable protein (MP) and RPM diet = 2.83 and 2.58% of Met as MP; CU CON = 2.22 and 2.19% of Met as percentage of MP, and CU RPM = 2.85 and 2.65% of Met as percentage of MP. Treatments were evaluated until 112 ± 3 d in milk (DIM). Milk yield was recorded daily. Milk samples were collected at wk 1 and 2 of lactation, and then every other week, and analyzed for milk composition. For lactation pens, dry matter intake (DMI) was recorded daily. Body weight and body condition score were determined from 4 ± 3 DIM and parturition until 39 ± 3 and 49 DIM, respectively. Plasma AA concentrations were evaluated within 3 h after feeding during the periparturient period [d -7 (±4), 0, 7 (±1), 14 (±1), and 21 (±1); n = 225]. In addition, plasma AA concentrations were evaluated (every 3 h for 24 h) after feeding in cows at 76 ± 8 DIM (n = 16) and within 3 h after feeding in cows at 80 ± 3 DIM (n = 72). The RPM treatment had no effect on DMI (27.9 vs. 28.0 kg/d) or milk yield (48.7 vs. 49.2 kg/d) for RPM and CON, respectively. Cows fed the RPM treatment had increased milk protein concentration (3.07 vs. 2.95%) and yield (1.48 vs. 1.43 kg/d), and milk fat concentration (3.87 vs. 3.77%), although milk fat yield did not differ. Plasma Met concentrations tended to be greater for cows fed RPM at 7 d before parturition (25.9 vs. 22.9 µM), did not differ at parturition (22.0 vs. 20.4 µM), and were increased on d 7 (31.0 vs. 21.2 µM) and remained greater with consistent concentrations until d 21 postpartum (d 14: 30.5 vs. 19.0 µM; d 21: 31.0 vs. 17.8 µM). However, feeding RPM decreased Leu, Val, Asn, and Ser (d 7, 14, and 21) and Tyr (d 14). At a later stage in lactation, plasma Met was increased for RPM cows (34.4 vs. 16.7 µM) consistently throughout the day, with no changes in other AA. Substantial variation was detected for plasma Met concentration (range: RPM = 8.9-63.3 µM; CON = 7.8-28.8 µM) among cows [coefficient of variation (CV) > 28%] and within cow during the day (CV: 10.5-27.1%). In conclusion, feeding RPM increased plasma Met concentration and improved lactation performance via increased milk protein production.


Asunto(s)
Metionina , Rumen , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Lactancia , Leche , Periodo Posparto
5.
J Dairy Sci ; 103(11): 10136-10151, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32952015

RESUMEN

During weaning, methionine (Met) supply decreases as liquid feed intake is reduced and ruminal function is developing. During this transition, the calf starter should both promote ruminal development and provide adequate nutrients post-ruminally. In mature ruminants, rumen-protected Met (RPM) and the Met analogs, 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa) and HMTBa isopropyl ester (HMBi), are used to increase Met supply, stimulate ruminal fermentation, or exert both effects, respectively. To evaluate the effects of these forms of Met on calf performance during development of ruminal function, 74 Holstein calves were raised until 91 d of age, in 2 enrollment periods. Calves were individually housed from birth and, at 14 d of age, balanced for sex and randomly assigned to receive a starter with no added Met (CTRL, n = 20) or one supplemented with RPM (Smartamine M, Adisseo USA Inc., Alpharetta, GA; n = 16), HMTBa (RumenSmart, Adisseo; n = 19), or HMBi (MetaSmart, Adisseo; n = 19). Milk replacer [28% crude protein (CP), 15% fat] was offered up to 1.6 kg of dry matter (DM)/d and fed 3 times daily. Weaning was facilitated from d 49 to 63. The 4 starters (25% CP, 2.5 Mcal of metabolizable energy/kg of DM) were offered ad libitum, and supplement inclusion was set to provide an additional 0.16% DM of Met equivalents, and equal amounts of HMTBa within the analogs. Body weight and stature were measured, and blood was collected and analyzed for plasma urea nitrogen, ß-hydroxybutyrate, and free AA on a weekly basis. Supplementation of RPM and HMBi increased free plasma Met, but no differences in growth or feed efficiency compared with calves fed the CTRL starter could be attributed to the additional Met supply alone. The addition of HMBi in the starter increased feed intake and body weight during the last weeks of the experiment. On the contrary, HMTBa failed to increase plasma Met and depressed intake and growth after weaning, likely because the level included in the diet was too high and intake was greater than previous studies, exacerbating the level of HMTBa ingested. No differences were observed in stature, feed efficiency, or non-AA plasma measurements among groups. These results demonstrate that RPM and HMBi are effective sources of metabolizable Met; however, Met was apparently not limiting calves fed the basal diet in this study. The increased feed intake observed with the inclusion of HMBi in the starter during the weaning and early postweaning period might be mediated by its metabolism in the rumen, and further research is needed to determine the mechanisms involved.


Asunto(s)
Bovinos/crecimiento & desarrollo , Dieta/veterinaria , Metionina/administración & dosificación , Rumen/metabolismo , Ácido 3-Hidroxibutírico/sangre , Aminoácidos/sangre , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Nitrógeno de la Urea Sanguínea , Peso Corporal , Butiratos/administración & dosificación , Butiratos/metabolismo , Bovinos/sangre , Enfermedades de los Bovinos/metabolismo , Suplementos Dietéticos , Femenino , Fermentación/efectos de los fármacos , Masculino , Metionina/metabolismo , Leche , Destete
6.
Int J Vet Sci Med ; 5(1): 1-7, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30255041

RESUMEN

Methionine is one of the most limiting amino acids in dairy diets and low feed intake around the time of calving could lead to decreased synthesis of phosphatidylcholine. An alternative pathway for phosphatidylcholine is to have choline as a precursor. The objective of this study was to determine the effects of feeding rumen-protected methionine and choline pre - and postpartum on reproduction of Holstein cows. Seventy-two Holstein cows were randomly assigned to four treatments from 21 days before calving to 30 days in milk (DIM): supplementation with rumen-protected methionine (MET; n = 20, received 0.08% of the dry matter (DM) of the diet/d as methionine, Smartamine M® to a Lys:Met = 2.9:1), rumen-protected choline (CHO; n = 17, received 60 g/d choline, Reassure), both rumen protected methionine and choline (MIX; n = 19, received 0.08% of the DM of the diet/d as methionine to a Lys:Met = 2.9:1 and 60 g/d choline), or no supplementation to serve as control (CON; n = 16, fed total mixed ration with a Lys:Met = 3.5:1). Cows were evaluated at 4, 7, 10, 13, 15, 17, and 30 d after calving for the presence of secretion using the Metricheck® device. On 15, 30, and 72 d after calving, the uterine endometrium of all cows was sampled using a cytological brush and streaked onto slides for analysis of the presence of polymorphonuclear neutrophils (PMN). We hypothesized that cows supplemented with methionine would have lower metricheck smell scores and lower rates of PMN than non-supplemented cows. On d 30, a treatment difference was detected using the metricheck score and smell (P < 0.04), with treatment MIX (score = 0.38) having a lower score than CHO (score = 2.11). Supplementing cows with rumen-protected methionine may have a beneficial effect on cows' uterine health.

7.
J Nutr ; 147(1): 11-19, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881594

RESUMEN

BACKGROUND: Compared with choline, Met enhances milk yield and feed intake, and elicits a better immuno-metabolic status in periparturient cows. It is unknown whether hepatic activity and transcription of betaine-homocysteine methyltransferase (BHMT), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and cystathionine ß-synthase (CBS) are responsive to Met and choline supply. OBJECTIVE: This study sought to characterize hepatic BHMT, MTR, and CBS transcription and activity in response to Met and choline supplementation. METHODS: Forty multiparous cows were used in a 2 × 2 factorial design from -21 d through 30 d around parturition to assess effects of dietary rumen-protected Met (0% or 0.08% dry matter basis) or rumen-protected choline (0 or 60 g · cow-1 · d-1). Liver tissue obtained on days -10, 7, 20, and 30 was used for analyses. RESULTS: Met-supplemented cows had greater methionine adenosyltransferase 1A (MAT1A) (0.38 compared with 0.27; SEM = 0.05; P = 0.02) and phosphatidylethanolamine methyltransferase (PEMT) (0.74 compared with 0.58; SEM = 0.08; P = 0.05) expression. Greater S-adenosylhomocysteine hydrolase (SAHH) (0.93 compared with 0.74; SEM = 0.05; P = 0.01) and CBS (1.16 compared with 1.02; SEM = 0.07; P = 0.04), as well as lower MTR activity (23.4 compared with 29.7 nmol product · h-1 · mg protein-1; SEM = 2.9; P = 0.04), also were detected in Met- but not choline-supplemented cows. Although BHMT and MTR expression and BHMT enzyme activity did not change (P > 0.05), MTR enzyme activity was lower in choline-supplemented cows (23.5 compared with 29.6 nmol product · h-1 · mg protein-1; SEM = 2.9; P = 0.05). CONCLUSIONS: These findings indicate that greater synthesis of phosphatidylcholine and antioxidants contribute to the better performance and immuno-metabolic status in Met-supplemented cows. Failure to generate a comparable amount of endogenous Met from choline could be one reason that choline-fed cows fail to achieve comparable performance and health benefits during the periparturient period.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Bovinos/fisiología , Colina/administración & dosificación , Cistationina betasintasa/metabolismo , Metionina/administración & dosificación , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Betaína-Homocisteína S-Metiltransferasa/genética , Cistationina betasintasa/genética , Dieta/veterinaria , Femenino , Regulación Enzimológica de la Expresión Génica , Hígado/enzimología , Hígado/metabolismo , Periodo Periparto
8.
Nutrients ; 9(1)2016 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-28036059

RESUMEN

The objective of this study was to profile plasma amino acids (AA) and derivatives of their metabolism during the periparturient period in response to supplemental rumen-protected methionine (MET) or rumen-protected choline (CHOL). Forty cows were fed from -21 through 30 days around parturition in a 2 × 2 factorial design a diet containing MET or CHOL. MET supply led to greater circulating methionine and proportion of methionine in the essential AA pool, total AA, and total sulfur-containing compounds. Lysine in total AA also was greater in these cows, indicating a better overall AA profile. Sulfur-containing compounds (cystathionine, cystine, homocystine, and taurine) were greater in MET-fed cows, indicating an enriched sulfur-containing compound pool due to enhanced transsulfuration activity. Circulating essential AA and total AA concentrations were greater in cows supplied MET due to greater lysine, arginine, tryptophan, threonine, proline, asparagine, alanine, and citrulline. In contrast, CHOL supply had no effect on essential AA or total AA, and only tryptophan and cystine were greater. Plasma 3-methylhistidine concentration was lower in response to CHOL supply, suggesting less tissue protein mobilization in these cows. Overall, the data revealed that enhanced periparturient supply of MET has positive effects on plasma AA profiles and overall antioxidant status.


Asunto(s)
Aminoácidos/sangre , Fenómenos Fisiológicos Nutricionales de los Animales , Carbono/metabolismo , Colina/administración & dosificación , Metionina/administración & dosificación , Aminoácidos Esenciales/sangre , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Bovinos , Colina/sangre , Cistationina/sangre , Cistina/sangre , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Homocistina/sangre , Hígado/metabolismo , Metionina/sangre , Metilhistidinas/sangre , Parto , Embarazo , Preñez , Rumen/metabolismo , Taurina/sangre , Triptófano/sangre
9.
PLoS One ; 8(8): e72302, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23991086

RESUMEN

Maternal nutrition exclusively during the periconceptional period can induce remarkable effects on both oocyte maturation and early embryo development, which in turn can have lifelong consequences. The objective of this study was to evaluate the effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. Holstein cows were randomly assigned to one of two treatments differing in level of dietary methionine (1.89 Met vs. 2.43 Met % of metabolizable protein) from calving until embryo flushing. High quality preimplantation embryos from individual cows were pooled and then analyzed by RNA sequencing. Remarkably, a subtle difference in methionine supplementation in maternal diet was sufficient to cause significant changes in the transcriptome of the embryos. A total of 276 genes out of 10,662 showed differential expression between treatments (FDR <0.10). Interestingly, several of the most significant genes are related to embryonic development (e.g., VIM, IFI6, BCL2A1, and TBX15) and immune response (e.g., NKG7, TYROBP, SLAMF7, LCP1, and BLA-DQB). Likewise, gene set enrichment analysis revealed that several Gene Ontology terms, InterPro entries, and KEGG pathways were enriched (FDR <0.05) with differentially expressed genes involved in embryo development and immune system. The expression of most genes was decreased by maternal methionine supplementation, consistent with reduced transcription of genes with increased methylation of specific genes by increased methionine. Overall, our findings provide evidence that supplementing methionine to dams prior to conception and during the preimplantation period can modulate gene expression in bovine blastocysts. The ramifications of the observed gene expression changes for subsequent development of the pregnancy and physiology of the offspring warrant further investigation in future studies.


Asunto(s)
Blastocisto , Suplementos Dietéticos , Metionina/administración & dosificación , Transcriptoma , Animales , Secuencia de Bases , Bovinos , Cartilla de ADN , Femenino , Regulación del Desarrollo de la Expresión Génica , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA