Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Cell Environ ; 47(4): 1416-1431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38226783

RESUMEN

White lupin (lupinus albus L.) forms special bottlebrush-like root structures called cluster roots (CR) when phosphorus is low, to remobilise sparingly soluble phosphates in the soil. The molecular mechanisms that control the CR formation remain unknown. Root development in other plants is regulated by CLE  (CLAVATA3/ EMBRYO SURROUNDING REGION (ESR)-RELATED) peptides, which provide more precise control mechanisms than common phytohormones. This makes these peptides interesting candidates to be involved in CR formation, where fine tuning to environmental factors is required. In this study we present an analysis of CLE peptides in white lupin. The peptides LaCLE35 (RGVHy PSGANPLHN) and LaCLE55 (RRVHy PSCHy PDPLHN) reduced root growth and altered CR in hydroponically cultured white lupins. We demonstrate that rootlet density and rootlet length were locally, but not systemically, impaired by exogenously applied CLE35. The peptide was identified in the xylem sap. The inhibitory effect of CLE35 on root growth was attributed to arrested cell elongation in root tips. Taken together, CLE peptides affect both rootlet density and rootlet length, which are two critical factors for CR formation, and may be involved in fine tuning this peculiar root structure that is present in a few crops and many Proteaceae species, under low phosphorus availability.


Asunto(s)
Lupinus , Raíces de Plantas , Regulación de la Expresión Génica de las Plantas , Fósforo/metabolismo , Péptidos
2.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955715

RESUMEN

Root foraging enables plants to obtain more soil nutrients in a constantly changing nutrient environment. Little is known about the adaptation mechanism of adventitious roots of plants dominated by asexual reproduction (such as tea plants) to soil potassium heterogeneity. We investigated root foraging strategies for K by two tea plants (low-K tolerant genotype "1511" and low-K intolerant genotype "1601") using a multi-layer split-root system. Root exudates, root architecture and transcriptional responses to K heterogeneity were analyzed by HPLC, WinRHIZO and RNA-seq. With the higher leaf K concentrations and K biological utilization indexes, "1511" acclimated to K heterogeneity better than "1601". For "1511", maximum total root length and fine root length proportion appeared on the K-enriched side; the solubilization of soil K reached the maximum on the low-K side, which was consistent with the amount of organic acids released through root exudation. The cellulose decomposition genes that were abundant on the K-enriched side may have promoted root proliferation for "1511". This did not happen in "1601". The low-K tolerant tea genotype "1511" was better at acclimating to K heterogeneity, which was due to a smart root foraging strategy: more roots (especially fine roots) were developed in the K-enriched side; more organic acids were secreted in the low-K side to activate soil K and the root proliferation in the K-enriched side might be due to cellulose decomposition. The present research provides a practical basis for a better understanding of the adaptation strategies of clonal woody plants to soil nutrient availability.


Asunto(s)
Camellia sinensis , Suelo , Camellia sinensis/genética , Celulosa , Raíces de Plantas/fisiología , Potasio ,
3.
Plant Cell ; 34(10): 4066-4087, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35880836

RESUMEN

Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.


Asunto(s)
Compuestos de Amonio , Micorrizas , Compuestos de Amonio/metabolismo , Regulación de la Expresión Génica de las Plantas , Micorrizas/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Suelo , Zea mays/metabolismo
4.
Physiol Plant ; 173(3): 1207-1220, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34333765

RESUMEN

White lupin (Lupinus albus L.) forms brush-like root structures called cluster roots under phosphorus-deficient conditions. Clusters secrete citrate and other organic compounds to mobilize sparingly soluble soil phosphates. In the context of aluminum toxicity tolerance mechanisms in other species, citrate is released via a subgroup of MATE/DTX proteins (multidrug and toxic compound extrusion/detoxification). White lupin contains 56 MATE/DTX genes. Many of these are closely related to gene orthologs with known substrates in other species. LaMATE is a marker gene for functional, mature clusters and is, together with its close homolog LaMATE3, a candidate for the citrate release. Both were highest expressed in mature clusters and when expressed in oocytes, induced inward-rectifying currents that were likely carried by endogenous channels. No citrate efflux was associated with LaMATE and LaMATE3 expression in oocytes. Furthermore, citrate secretion was largely unaffected in P-deficient composite mutant plants with genome-edited or RNAi-silenced LaMATE in roots. Moderately lower concentrations of citrate and malate in the root tissue and consequently less organic acid anion secretion and lower malate in the xylem sap were identified. Interestingly, however, less genistein was consistently found in mutant exudates, opening the possibility that LaMATE is involved in isoflavonoid release.


Asunto(s)
Lupinus , Ácido Cítrico , Lupinus/genética , Fosfatos , Fósforo , Raíces de Plantas/genética
5.
Ann Bot ; 128(4): 431-440, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34309655

RESUMEN

BACKGROUND AND AIMS: Root proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition. METHODS: Near-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg-1 soil. RESULTS: Both WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients. CONCLUSIONS: In addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.


Asunto(s)
Fósforo , Zea mays , Nutrientes , Raíces de Plantas , Suelo
6.
Ann Bot ; 127(1): 155-166, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877525

RESUMEN

BACKGROUND AND AIMS: An increase in root hair length and density and the development of arbuscular mycorrhiza symbiosis are two alternative strategies of most plants to increase the root-soil surface area under phosphorus (P) deficiency. Across many plant species, root hair length and mycorrhization density are inversely correlated. Root architecture, rooting density and physiology also differ between species. This study aims to understand the relationship among root hairs, arbuscular mycorrhizal fungi (AMF) colonization, plant growth, P acquisition and mycorrhizal-specific Pi transporter gene expression in maize. METHODS: Using nearly isogenic maize lines, the B73 wild type and the rth3 root hairless mutant, we quantified the effect of root hairs and AMF infection in a calcareous soil under P deficiency through a combined analysis of morphological, physiological and molecular factors. KEY RESULTS: Wild-type root hairs extended the rhizosphere for acid phosphatase activity by 0.5 mm compared with the rth3 hairless mutant, as measured by in situ zymography. Total root length of the wild type was longer than that of rth3 under P deficiency. Higher AMF colonization and mycorrhiza-induced phosphate transporter gene expression were identified in the mutant under P deficiency, but plant growth and P acquisition were similar between mutant and the wild type. The mycorrhizal dependency of maize was 33 % higher than the root hair dependency. CONCLUSIONS: The results identified larger mycorrhizal dependency than root hair dependency under P deficiency in maize. Root hairs and AMF inoculation are two alternative ways to increase Pi acquisition under P deficiency, but these two strategies compete with each other.


Asunto(s)
Micorrizas , Fósforo , Raíces de Plantas , Suelo , Simbiosis , Zea mays
7.
Front Plant Sci ; 11: 396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391028

RESUMEN

AIMS: Low soil temperature in spring is a major constraint for the cultivation of tropical crops in temperate climates. This study aims at the exploitation of synergistic interactions of micronutrients, consortia of plant growth-promoting microorganisms and N forms as cold-stress protectants. METHODS: Maize seedlings were exposed for two weeks to low root zone temperatures at 8-14°C under controlled conditions on a silty clay-loam soil (pH 6.9) collected from a maize field cultivation site. A pre-selection trial with fungal and bacterial PGPM strains revealed superior cold-protective performance for a microbial consortium of Trichoderma harzianum OMG16 and Bacillus spp. with Zn/Mn supplementation (CombiA+), particularly in combination with N-ammonium as a starting point for the characterization of the underlying physiological and molecular mechanisms. RESULTS: In nitrate-treated plants, the cold stress treatment increased oxidative leaf damage by 133% and reduced the shoot biomass by 25%, related with reduced acquisition of phosphate (P), zinc (Zn) and manganese (Mn). The supplying of N as ammonium improved the Zn and Mn nutritional status and increased the ABA shoot concentration by 33%, as well as moderately increased detoxification of reactive oxygen species (ROS). Moreover, use of N as ammonium also increased the root auxin (IAA) concentration (+76%), with increased expression of auxin-responsive genes, involved in IAA synthesis (ZmTSA), transport (ZmPIN1a), and perception (ZmARF12). Additional inoculation with the microbial consortium promoted root colonization with the inoculant strain T. harzianum OMG16 in combination with ammonium fertilization (+140%). An increased ABA/cytokinin ratio and increased concentrations of jasmonic (JA) and salicylic acids (SA) were related to a further increase in enzymatic and non-enzymatic ROS detoxification. Additional supplementation with Zn and Mn further increased shoot IAA, root length and total antioxidants, resulting in the highest shoot biomass production and the lowest leaf damage by oxidative chemical species. CONCLUSION: Our results suggest the mitigation of cold stress and reduction of stress priming effects on maize plants due to improved ROS detoxification and induction of hormonal stress adaptations relying on the strategic combination of stress-protective nutrients with selected microbial inoculants.

8.
Plant Cell Environ ; 43(7): 1691-1706, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32239684

RESUMEN

Under phosphorus (P) deficiency, Lupinus albus (white lupin) releases large amounts of organic acid anions from specialized root structures, so-called cluster or proteoid roots, to mobilize and acquire sparingly soluble phosphates from a restricted soil volume. The molecular mechanisms underlying this release and its regulation are, however, poorly understood. Here, we identified a gene belonging to the aluminium (Al)-activated malate transporter (ALMT) family that specifically contributes to malate, but not citrate release. This gene, LaALMT1, was most prominently expressed in the root apices under P deficiency, including those of cluster roots and was also detected in the root stele. Contrary to several ALMT homologs in other species, the expression was not stimulated, but moderately repressed by Al. Aluminium-independent malate currents were recorded from the plasma membrane localized LaALMT1 expressed in Xenopus oocytes. In composite lupins with transgenic roots, LaALMT1 was efficiently mutated by CRISPR-Cas9, leading to diminished malate efflux and lower xylem sap malate concentrations. When grown in an alkaline P-deficient soil, mutant shoot phosphate concentrations were similar, but iron and potassium concentrations were diminished in old leaves, suggesting a role for ALMT1 in metal root to shoot translocation, a function that was also supported by growth in hydroponics.


Asunto(s)
Lupinus/metabolismo , Malatos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Lupinus/genética , Proteínas de Transporte de Membrana/genética , Fósforo/deficiencia , Filogenia , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Xilema/metabolismo
9.
FEMS Microbiol Ecol ; 95(9)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31386159

RESUMEN

Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P.


Asunto(s)
Inoculantes Agrícolas/crecimiento & desarrollo , Microbiota , Fósforo/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Inoculantes Agrícolas/metabolismo , Bacillus amyloliquefaciens/crecimiento & desarrollo , Bacillus amyloliquefaciens/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Solanum lycopersicum/metabolismo , Fósforo/análisis , Raíces de Plantas/microbiología , Pseudomonas/crecimiento & desarrollo , Pseudomonas/metabolismo , Rizosfera , Microbiología del Suelo , Trichoderma/crecimiento & desarrollo , Trichoderma/metabolismo
10.
Ann Bot ; 124(6): 961-968, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30759179

RESUMEN

BACKGROUND AND AIMS: Root hairs are single-cell extensions of the epidermis that face into the soil and increase the root-soil contact surface. Root hairs enlarge the rhizosphere radially and are very important for taking up water and sparingly soluble nutrients, such as the poorly soil-mobile phosphate. In order to quantify the importance of root hairs for maize, a mutant and the corresponding wild type were compared. METHODS: The rth2 maize mutant with very short root hairs was assayed for growth and phosphorus (P) acquisition in a slightly alkaline soil with low P and limited water supply in the absence of mycorrhization and with ample P supply. KEY RESULTS: Root and shoot growth was additively impaired under P deficiency and drought. Internal P concentrations declined with reduced water and P supply, whereas micronutrients (iron, zinc) were little affected. The very short root hairs in rth2 did not affect internal P concentrations, but the P content of juvenile plants was halved under combined stress. The rth2 plants had more fine roots and increased specific root length, but P mobilization traits (root organic carbon and phosphatase exudation) differed little. CONCLUSIONS: The results confirm the importance of root hairs for maize P uptake and content, but not for internal P concentrations. Furthermore, the performance of root hair mutants may be biased by secondary effects, such as altered root growth.


Asunto(s)
Sequías , Zea mays , Fósforo , Raíces de Plantas , Suelo
11.
Front Plant Sci ; 9: 420, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755482

RESUMEN

Low soil temperature in spring is a major constraint for the cultivation of tropical and subtropical crops in temperate climates, associated with inhibition of root growth and activity, affecting early growth and frequently plant performance and final yield. This study was initiated to investigate the physiological base of cold-protective effects induced by supplementation with silicon (Si), widely recommended as a stress-protective mineral nutrient. Maize was used as a cold-sensitive model plant, exposed to chilling stress and low root-zone temperature (RZT) during early growth in a lab to field approach. In a pot experiment, 2-weeks exposure of maize seedlings to low RZT of 12-14°C, induced leaf chlorosis and necrosis, inhibition of shoot and root growth and micronutrient limitation (particularly Zn and Mn). These phenotypes were mitigated by seed treatments with the respective micronutrients, but surprisingly, also by Si application. Both, silicon and micronutrient treatments were associated with increased activity of superoxide dismutase in shoot and roots (as a key enzyme for detoxification of reactive oxygen species, depending on Zn and Mn as cofactors), increased tissue concentrations of phenolics, proline, and antioxidants, but reduced levels of H2O2. These findings suggest that mitigation of oxidative stress is a major effect of Zn, Mn, and Si applied as cold stress protectants. In a soil-free culture system without external nutrient supply, Si significantly reduced large leaching losses of Zn and Mn from germinating seeds exposed to low-temperature stress. Silicon also increased the translocation of micronutrient seed reserves to the growing seedling, especially the Zn shoot translocation. In later stages of seedling development (10 days after sowing), cold stress reduced the root and shoot contents of important hormonal growth regulators (indole acetic acid, gibberellic acid, zeatin). Silicon restored the hormonal balances to a level comparable with non-stressed plants and stimulated the production of hormones involved in stress adaptation (abscisic, salicylic, and jasmonic acids). Beneficial effects of Si seed treatments on seedling establishment and the nutritional status of Zn and Mn were also measured for a field-grown silage maize, exposed to chilling stress by early sowing. This translated into increased final biomass yield.

12.
PLoS One ; 11(12): e0168623, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27992519

RESUMEN

The propagation via clonal stem cuttings is a frequent practice in tree plantations. Despite their clonal origin, the trees establish differently according to weather, temperature and nutrient availability, as well as the presence of various stresses. Here, clonal Populus trichocarpa (cv. Muhle Larson) cuttings from different sites were transferred into a common, fully nutrient supplied environment. Despite identical underlying genetics, stem cuttings derived from sites with lower phosphorus availability established worse, independent of phosphorus (P) level after transplantation. Differential growth of material from the sites was reflected in differences in the whole genome DNA methylome. Methylation differences were sequence context-dependent, but differentially methylated regions (DMRs) were apparently unrelated to P nutrition genes. Despite the undisputed negative general correlation of DNA promoter methylation with gene repression, only few of the top-ranked DMRs resulted in differential gene expression in roots or shoots. However, differential methylation was associated with site-dependent, different total amounts of microRNAs (miRNAs), with few miRNAs sequences directly targeted by differential methylation. Interestingly, in roots and shoots, the miRNA amount was dependent on the previous habitat and changed in roots in a habitat-dependent way under phosphate starvation conditions. Differentially methylated miRNAs, together with their target genes, showed P-dependent expression profiles, indicating miRNA expression differences as a P-related epigenetic modification in poplar. Together with differences in DNA methylation, such epigenetic mechanisms may explain habitat or seasonal memory in perennials and site-dependent growth performances.


Asunto(s)
Metilación de ADN/fisiología , ADN de Plantas/metabolismo , Epigénesis Genética/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Populus/fisiología , Estrés Fisiológico , MicroARNs/biosíntesis , Fósforo/fisiología , ARN de Planta/biosíntesis , Estaciones del Año
13.
J Proteome Res ; 14(8): 3362-71, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26179556

RESUMEN

Plants increase their root surface with root hairs to improve the acquisition of nutrients from the soil. The unicellular character of root hairs and their position at the root surface make them an attractive system to investigate adaptive processes of rhizodermal cells that are in direct contact with the soil solution. In young maize seedlings, roots are densely covered with root hairs, although nutrient reserves in the seed are sufficient to support seedling growth rates for a few days. We used a label-free quantitative proteomics approach to study protein abundance adjustments in 4 day old root hairs grown in aeroponic culture in the presence and absence of several macro- and micronutrients. Compared to the proteome of root hairs developed under full nutrition, protein abundance changes were observed in pathways related to macronutrient (N, P, K, and Mg) deficiencies. For example, lack of N in the medium repressed the primary N metabolism pathway, increased amino acid synthesis, but repressed their degradation, and affected the primary carbon metabolism, such as glycolysis. Glycolysis was similarly affected by K and P deprivation, but the glycolytic pathway was negatively regulated by the absence of the micronutrients Fe and Zn. In contrast, the deprivation of Mn had almost no affect on the root hair proteome. Our results indicate either that the metabolism of very young root hairs adjusts to cellular nutrient deficiencies that have been already experienced or that root hairs sense the external lack of specific nutrients in the nutrient solution and adjust their metabolism accordingly.


Asunto(s)
Micronutrientes/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Zea mays/metabolismo , Cromatografía Liquida , Análisis por Conglomerados , Producción de Cultivos/métodos , Cinética , Magnesio/metabolismo , Magnesio/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Micronutrientes/farmacología , Nitrógeno/metabolismo , Nitrógeno/farmacología , Péptidos/metabolismo , Fosfopéptidos/metabolismo , Fósforo/metabolismo , Fósforo/farmacología , Proteínas de Plantas/clasificación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Potasio/metabolismo , Potasio/farmacología , Proteoma/clasificación , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
14.
J Plant Physiol ; 177: 74-82, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25668414

RESUMEN

This study addresses hormonal interactions involved in cluster-root (CR) development of phosphate (Pi)-deficient white lupin (Lupinus albus), which represents the most efficient plant strategy for root-induced mobilisation of sparingly soluble soil phosphorus (P) sources. Shoot-to-root translocation of auxin was unaffected by P-limitation, while strong stimulatory effects of external sucrose on CR formation, even in P-sufficient plants, suggest sucrose, rather than auxins, acts as a shoot-borne signal, triggering the induction of CR primordia. Ethylene may act as mediator of the sucrose signal, as indicated by moderately increased expression of genes involved in ethylene biosynthesis in pre-emergent clusters and by strong inhibitory effects of the ethylene antagonist CoCl2 on CR formation induced by sucrose amendments or P-limitation. As reported in other plants, moderately increased production of brassinosteroids (BRs) and cytokinin, in pre-emergent clusters, may be required for the formation of auxin gradients necessary for induction of CR primordia via interference with auxin biosynthesis and transport. The well-documented inhibition of root elongation by high doses of ethylene may be involved in the growth inhibition of lateral rootlets during CR maturation, indicated by a massive increased expression of gene involved in ethylene production, associated with a declined expression of transcripts with stimulatory effects (BR and auxin-related genes).


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lupinus/crecimiento & desarrollo , Lupinus/genética , Reguladores del Crecimiento de las Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Lupinus/metabolismo , Fósforo/deficiencia , Fósforo/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA