Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(52): 26909-26917, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31811021

RESUMEN

Medicinal plants are a prolific source of natural products with remarkable chemical and biological properties, many of which have considerable remedial benefits. Numerous medicinal plants are suffering from wildcrafting, and thus biotechnological production processes of their natural products are urgently needed. The plant Aster tataricus is widely used in traditional Chinese medicine and contains unique active ingredients named astins. These are macrocyclic peptides showing promising antitumor activities and usually containing the highly unusual moiety 3,4-dichloroproline. The biosynthetic origins of astins are unknown despite being studied for decades. Here we show that astins are produced by the recently discovered fungal endophyte Cyanodermella asteris. We were able to produce astins in reasonable and reproducible amounts using axenic cultures of the endophyte. We identified the biosynthetic gene cluster responsible for astin biosynthesis in the genome of C. asteris and propose a production pathway that is based on a nonribosomal peptide synthetase. Striking differences in the production profiles of endophyte and host plant imply a symbiotic cross-species biosynthesis pathway for astin C derivatives, in which plant enzymes or plant signals are required to trigger the synthesis of plant-exclusive variants such as astin A. Our findings lay the foundation for the sustainable biotechnological production of astins independent from aster plants.

2.
Planta Med ; 85(14-15): 1177-1186, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31450245

RESUMEN

Comfrey is a medicinal plant, extracts of which are traditionally used for the treatment of painful inflammatory muscle and joint problems, because the plant contains allantoin and rosmarinic acid. However, its medicinal use is limited because of its toxic pyrrolizidine alkaloid (PA) content. PAs encompass more than 400 different compounds that have been identified from various plant lineages. To date, only the first pathway-specific enzyme, homospermidine synthase (HSS), has been characterized. HSS catalyzes the formation of homospermidine, which is exclusively incorporated into PAs. HSS has been recruited several times independently in various plant lineages during evolution by duplication of the gene encoding deoxyhypusine synthase (DHS), an enzyme of primary metabolism. Here, we describe the establishment of RNAi knockdown hairy root mutants of HSS in Symphytum officinale. A knockdown of HSS by 60 - 80% resulted in a significant reduction of homospermidine by ~ 86% and of the major PA components 7-acetylintermedine N-oxide and 3-acetylmyoscorpine N-oxide by approximately 60%. The correlation of reduced transcript levels of HSS with reduced levels of homospermidine and PAs provides in planta support for HSS being the central enzyme in PA biosynthesis. Furthermore, the generation of PA-depleted hairy roots might be a cost-efficient way for reducing toxic by-products that limit the medicinal applicability of S. officinale extracts.


Asunto(s)
Transferasas Alquil y Aril/genética , Consuelda/química , Regulación de la Expresión Génica de las Plantas , Alcaloides de Pirrolicidina/metabolismo , Transferasas Alquil y Aril/metabolismo , Consuelda/genética , Mutación , Raíces de Plantas/química , Raíces de Plantas/genética , Plantas Medicinales , Alcaloides de Pirrolicidina/toxicidad , Interferencia de ARN
3.
Biotechnol J ; 14(8): e1800624, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31161690

RESUMEN

The fungal endophyte Cyanodermella asteris (C. asteris) has been recently isolated from the medicinal plant Aster tataricus (A. tataricus). This fungus produces astin C, a cyclic pentapeptide with anticancer and anti-inflammatory properties. The production of this secondary metabolite is compared in immobilized and planktonic conditions. For immobilized cultures, a stainless steel packing immersed in the culture broth is used as a support. In these conditions, the fungus exclusively grows on the packing, which provides a considerable advantage for astin C recovery and purification. C. asteris metabolism is different according to the culture conditions in terms of substrate consumption rate, cell growth, and astin C production. Immobilized-cell cultures yield a 30% increase of astin C production, associated with a 39% increase in biomass. The inoculum type as spores rather than hyphae, and a pre-inoculation washing procedure with sodium hydroxide, turns out to be beneficial both for astin C production and fungus development onto the support. Finally, the influence of culture parameters such as pH and medium composition on astin C production is evaluated. With optimized culture conditions, astin C yield is further improved reaching a five times higher final specific yield compared to the value reported with astin C extraction from A. tataricus (0.89 mg g-1 and 0.16 mg g-1 respectively).


Asunto(s)
Ascomicetos/metabolismo , Medios de Cultivo/química , Microbiología Industrial/métodos , Péptidos Cíclicos/biosíntesis , Ascomicetos/citología , Ascomicetos/crecimiento & desarrollo , Reactores Biológicos , Células Inmovilizadas , Endófitos/metabolismo , Microbiología Industrial/instrumentación , Plancton , Acero Inoxidable
4.
J Biotechnol ; 257: 233-239, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-28647529

RESUMEN

Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites.


Asunto(s)
Antraquinonas/metabolismo , Antineoplásicos/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Vías Biosintéticas/genética , Endófitos , Policétidos/metabolismo , Ascomicetos/enzimología , Secuencia de Bases , ADN de Hongos/genética , Emodina/metabolismo , Genes Fúngicos , Genoma Fúngico/genética , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Familia de Multigenes , Pigmentos Biológicos/metabolismo , Plantas Medicinales/microbiología , Sintasas Poliquetidas/genética , Metabolismo Secundario/genética
5.
Appl Microbiol Biotechnol ; 98(5): 2029-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24318010

RESUMEN

Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, which are synthesized only by photosynthetic organisms. Due to their enormous potential to protect cells from oxidative damage, tocopherols are used, e.g., as nutraceuticals and additives in pharmaceuticals. The most biologically active form of vitamin E is α-tocopherol. Most tocopherols are currently produced via chemical synthesis. Nevertheless, this always results in a racemic mixture of different and less effective stereoisomers because the natural isomer has the highest biological activity. Therefore, tocopherols synthesized in natural sources are preferred for medical purposes. The annual sunflower (Helianthus annuus L.) is a well-known source for α-tocopherol. Within the presented work, sunflower callus and suspension cultures were established growing under photomixotrophic conditions to enhance α-tocopherol yield. The most efficient callus induction was achieved with sunflower stems cultivated on solid Murashige and Skoog medium supplemented with 30 g l(-1) sucrose, 0.5 mg l(-1) of the auxin 1-naphthalene acetic acid, and 0.5 mg l(-1) of the cytokinin 6-benzylaminopurine. Photomixotrophic sunflower suspension cultures were induced by transferring previously established callus into liquid medium. The effects of light intensity, sugar concentration, and culture age on growth rate and α-tocopherol synthesis rate were characterized. A considerable increase (max. 230%) of α-tocopherol production in the cells was obtained within the photomixotrophic cell culture compared to a heterotrophic cell culture. These results will be useful for improving α-tocopherol yields of plant in vitro cultures.


Asunto(s)
Biotecnología/métodos , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , alfa-Tocoferol/metabolismo , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Glucosa/metabolismo , Luz
6.
New Phytol ; 190(1): 193-205, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21232061

RESUMEN

We investigated the relationship between ABA and ethylene regulating the formation of the arbuscular mycorrhiza (AM) symbiosis in tomato (Solanum lycopersicum) plants and tried to define the specific roles played by each of these phytohormones in the mycorrhization process. We analysed the impact of ABA biosynthesis inhibition on mycorrhization by Glomus intraradices in transgenic tomato plants with an altered ethylene pathway. We also studied the effects on mycorrhization in sitiens plants treated with the aminoethoxyvinyl glycine hydrochloride (AVG) ethylene biosynthesis inhibitor and supplemented with ABA. In addition, the expression of plant and fungal genes involved in the mycorrhization process was studied. ABA biosynthesis inhibition qualitatively altered the parameters of mycorrhization in accordance with the plant's ethylene perception and ethylene biosynthesis abilities. Inhibition of ABA biosynthesis in wild-type plants negatively affected all the mycorrhization parameters studied, while tomato mutants impaired in ethylene synthesis only showed a reduced arbuscular abundance in mycorrhizal roots. Inhibition of ethylene synthesis in ABA-deficient sitiens plants increased the intensity of mycorrhiza development, while ABA application rescued arbuscule abundance in the root's mycorrhizal zones. The results of our study show an antagonistic interaction between ABA and ethylene, and different roles of each of the two hormones during AM formation. This suggests that a dual ethylene-dependent/ethylene-independent mechanism is involved in ABA regulation of AM formation.


Asunto(s)
Ácido Abscísico/farmacología , Etilenos/farmacología , Glomeromycota/fisiología , Micorrizas/fisiología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/microbiología , Ácido Abscísico/biosíntesis , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glomeromycota/efectos de los fármacos , Glicina/análogos & derivados , Glicina/farmacología , Solanum lycopersicum/genética , Modelos Biológicos , Mutación/genética , Micorrizas/efectos de los fármacos , Micorrizas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Compuestos de Tungsteno/farmacología
7.
Z Naturforsch C J Biosci ; 63(9-10): 699-705, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19040110

RESUMEN

A cell suspension culture of sunflower (Helianthus annuus), a producer of immunologically active polysaccharides, was cultivated in a 5-L stirred tank bioreactor, operated in batch mode. After some changes in the internal bioreactor design a stable growth of Helianthus cells was achieved and the accumulated biomass reached 15.2 g/L (only approximately 5% lower compared to the accumulated biomass in shake-flasks). Flow cytometry used for measuring the cell cycle parameters of suspended Helianthus cells did not reveal significant differences between shake-flasks and bioreactor cultivation modes. For both cultivation methods significant enhancement of the percentage of S-phase cells was observed at the beginning of the cultivation process. Concerning the metabolite production the maximum in exopolysaccharides was reached at day 9 of the cultivation period (1.9 g/L), while the highest amounts of alpha-tocopherol were accumulated at the beginning of the cultivation process (day 2 of the cultivation). These finding were related to the respective stress levels caused by the inoculation procedure. The kinetic parameters of growth and polysaccharide production as well as the time course of carbon source utilization were monitored and discussed.


Asunto(s)
Helianthus/citología , Aceites de Plantas/química , Acetamidas , Reactores Biológicos , Carbono/metabolismo , Ciclo Celular , División Celular , Citometría de Flujo , Fluoroacetatos , Fase G1 , Helianthus/fisiología , Consumo de Oxígeno , Aceites de Plantas/aislamiento & purificación , Polisacáridos/aislamiento & purificación , Fase de Descanso del Ciclo Celular , Aceite de Girasol , Compuestos de Trimetilsililo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA