Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 33(5): 1693-1707, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35512682

RESUMEN

Establishing neuronal circuits requires interactions between pre- and postsynaptic neurons. While presynaptic neurons were shown to play instructive roles for the postsynaptic neurons, how postsynaptic neurons provide feedback to regulate the presynaptic neuronal development remains elusive. To elucidate the mechanisms for circuit formation, we study the development of barrel cortex (the primary sensory cortex, S1), whose development is instructed by presynaptic thalamocortical axons (TCAs). In the first postnatal weeks, TCA terminals arborize in layer (L) 4 to fill in the barrel center, but it is unclear how TCA development is regulated. Here, we reported that the deletion of Lhx2 specifically in the cortical neurons in the conditional knockout (cKO) leads to TCA arborization defects, which is accompanied with deficits in sensory-evoked and spontaneous cortical activities and impaired lesion-induced plasticity following early whisker follicle ablation. Reintroducing Lhx2 back in L4 neurons in cKO ameliorated TCA arborization and plasticity defects. By manipulating L4 neuronal activity, we further demonstrated that Lhx2 induces TCA arborization via an activity-dependent mechanism. Additionally, we identified the extracellular signaling protein Sema7a as an activity-dependent downstream target of Lhx2 in regulating TCA branching. Thus, we discovered a bottom-up feedback mechanism for the L4 neurons to regulate TCA development.


Asunto(s)
Neuronas , Tálamo , Retroalimentación , Tálamo/fisiología , Neuronas/fisiología , Axones/fisiología , Transducción de Señal , Corteza Somatosensorial/fisiología
2.
J Neurosci ; 42(22): 4435-4448, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35501157

RESUMEN

The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first postnatal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher-order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate the developmental engagement of wS2 by whisker stimuli and the emergence of corticocortical communication from wS1 to wS2. Using in vivo wide-field imaging and multielectrode recordings in control and conditional KO mice of either sex with thalamocortical innervation defects, we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus from birth. We also identify that it is only at the end of the first postnatal week that wS1 begins to provide functional excitation into wS2, switching to more inhibitory actions after the second postnatal week. Therefore, we have uncovered a developmental window when information transfer between wS1 and wS2 reaches mature function.SIGNIFICANCE STATEMENT At the end of the first postnatal week, the primary whisker somatosensory area starts providing excitatory input to the secondary whisker somatosensory area 2. This excitatory drive weakens during the second postnatal week and switches to inhibition in the adult.


Asunto(s)
Corteza Somatosensorial , Vibrisas , Animales , Ratones , Corteza Somatosensorial/fisiología , Tálamo , Tacto/fisiología , Vibrisas/inervación
3.
J Physiol ; 598(12): 2397-2414, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144956

RESUMEN

KEY POINTS: The major electrophysiological hallmarks of absence seizures are spike and wave discharges (SWDs), consisting of a sharp spike component and a slow wave component. In a widely accepted scheme, these components are functionally coupled and reflect an iterative progression of neuronal excitation during the spike and post-excitatory silence during the wave. In a genetic rat model of absence epilepsy, local pharmacological inhibition of the centromedian thalamus (CM) selectively suppressed the spike component, leaving self-contained waves in epidural recordings. Thalamic inputs induced activity in cortical microcircuits underlying the spike component, while intracortical oscillations generated the wave component. Based on these findings, we propose a model in which oscillatory waves provide adequate time windows for integration of thalamocortical inputs and feedback responses during generation of a synchronized SWD. ABSTRACT: Spike and wave discharges (SWDs) are the electrographic hallmark of absence seizures and the major diagnostic criterion for childhood absence epilepsy (CAE). In a widely accepted scheme, the alternating sequence of spikes and waves reflects an iterative progression of neuronal excitation during the spike component and post-excitatory silence during the wave component. Here we challenge this view by showing that these two components are not necessarily coupled. In a genetic rat model of CAE, self-contained waves occurred in motor cortex in synchrony with SWDs in the somatosensory system during blockade of afferent input from the thalamus. Current-source density analyses of multi-site local field potentials (LFPs) revealed layer-specific activity, in which thalamic inputs induced a sequence of cellular-synaptic events underlying the spike component, while intracortical oscillations generated the wave component. These findings indicate novel principles of SWDs, where oscillatory cortical waves provide adequate time windows for integration of thalamocortical inputs and feedback responses during generation of seizure activity.


Asunto(s)
Epilepsia Tipo Ausencia , Animales , Corteza Cerebral , Niño , Electroencefalografía , Humanos , Neuronas , Alta del Paciente , Ratas , Convulsiones , Tálamo
4.
Neuron ; 92(1): 126-142, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27641493

RESUMEN

Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2-/- thalamus restored the aberrant cortical innervation. We identified radixin as a PRG-2 interaction partner and showed that radixin accumulation in growth cones and its LPA-dependent phosphorylation depend on its binding to specific regions within the C-terminal region of PRG-2. In vivo recordings and whisker-specific behavioral tests demonstrated sensory discrimination deficits in PRG-2-/- animals. Our data show that bioactive phospholipids and PRG-2 are critical for guiding thalamic axons to their proper cortical targets.


Asunto(s)
Orientación del Axón/fisiología , Corteza Cerebral/crecimiento & desarrollo , Proteínas del Citoesqueleto/fisiología , Lisofosfolípidos/fisiología , Proteínas de la Membrana/fisiología , Transducción de Señal/fisiología , Tálamo/crecimiento & desarrollo , Animales , Corteza Cerebral/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Discriminación en Psicología/fisiología , Conos de Crecimiento/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Fosforilación , Tálamo/metabolismo
5.
Cereb Cortex ; 26(7): 3260-72, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26980613

RESUMEN

Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Corteza Somatosensorial/metabolismo , Transmisión Sináptica/fisiología , Tálamo/metabolismo , Vibrisas/fisiología , Animales , Proteínas de Unión a Calmodulina/genética , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Equilibrio Postural/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Tálamo/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos , Percepción del Tacto/fisiología , Caminata/fisiología
6.
J Neurosci ; 22(16): 7165-76, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12177212

RESUMEN

Subplate neurons (SPn) play an important role in the formation of thalamocortical connections during early development and show glutamatergic and GABAergic spontaneous synaptic activity. We characterized these synaptic inputs by performing whole-cell recordings from SPn in somatosensory cortical slices of postnatal day 0-3 rats. At -70 mV, electrical stimulation of the thalamocortical afferents elicited in 68% of the SPn a monosynaptic CNQX-sensitive postsynaptic current (PSC). These fast PSCs were mediated by AMPA receptors, because they were prolonged by cyclothiazide and blocked by GYKI 52466. On membrane depolarization, thalamocortical stimulation elicited in 50% of the cells an additional slow monosynaptic component mediated by NMDA receptors. Stimulation of the cortical plate evoked in 72% of SPn a monosynaptic AMPA receptor-mediated PSC with an additional NMDA component at depolarized membrane potentials and in 40% of the investigated cells polysynaptic responses, depending on GABA(A) and NMDA receptors. Stimulation of the subplate elicited in 67% of SPn a monosynaptic dual-component PSC mediated by AMPA and NMDA receptors activated at -70 mV and in 12% of SPn a monosynaptic single-component PSC mediated by AMPA receptors with an additional NMDA component activated at depolarized membrane potentials. A monosynaptic GABAergic response could be observed in 68% of SPn after stimulation of the subplate. In gramicidin-perforated patch recordings, bath application of GABA caused membrane depolarization to -40 mV and elicited action potentials. These results demonstrate that SPn receive distinct functional synaptic inputs arising from the thalamus, cortical plate, and subplate, indicating that SPn are capable of integrating and processing information from cortical and subcortical regions.


Asunto(s)
Lisina/análogos & derivados , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Animales , Animales Recién Nacidos , Membrana Celular/fisiología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores AMPA/efectos de los fármacos , Receptores AMPA/metabolismo , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Tálamo/fisiología , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA