Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neural Dev ; 9: 14, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24929424

RESUMEN

BACKGROUND: The thalamus is often defined as the 'gateway to consciousness', a feature that is supported by the specific connectivity and electrophysiological properties of its neurons. Inhibitory GABAergic neurons are required for the dynamic gating of information passing through the thalamus. The high degree of heterogeneity among thalamic GABA neurons suggests that, during embryonic development, alternative differentiation programmes exist to guide the acquisition of inhibitory neuron subtype identity. RESULTS: Taking advantage of the accessibility of the developing chick embryo, we have used in ovo manipulations of gene expression to test the role of candidate transcription factors in controlling GABAergic neuronal subtype identity in the developing thalamus. CONCLUSIONS: In this study, we describe two alternative differentiation programmes for GABAergic neurogenesis in the thalamus and identify Helt and Dlx2 as key transcription factors that are sufficient to direct neuronal progenitors along a specific differentiation pathway at the expense of alternative lineage choices. Furthermore, we identify Calb2, a gene encoding for the GABA subtype marker calretinin as a target of the transcription factor Sox14. This work is a step forward in our understanding of how GABA neuron diversity in the thalamus is achieved during development and will help future investigation of the molecular mechanisms that lead up to the acquisition of different synaptic targets and electrophysiological features of mature thalamic inhibitory neurons.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Neurogénesis/genética , Tálamo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Pollo , Neuronas GABAérgicas/clasificación , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB2/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Proc Natl Acad Sci U S A ; 110(41): E3919-26, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24065827

RESUMEN

During embryonic development, the presumptive GABAergic rostral thalamus (rTh) and glutamatergic caudal thalamus (cTh) are induced by Sonic hedgehog (Shh) signaling from the zona limitans intrathalamica (ZLI) at the rostral border of the thalamic primordium. We found that these inductions are limited to the neuroepithelium between the ZLI and the forebrain-midbrain boundary, suggesting a prepattern that limits thalamic competence. We hypothesized that this prepattern is established by the overlapping expression of two transcription factors: Iroquois-related homeobox gene 3 (Irx3) posterior to the ZLI, and paired box gene 6 (Pax6) anterior to the forebrain-midbrain boundary. Consistent with this assumption, we show that misexpression of Irx3 in the prethalamus or telencephalon results in ectopic induction of thalamic markers in response to Shh, that it functions as a transcriptional repressor in this context, and that antagonizing its function in the diencephalon attenuates thalamic specification. Similarly, misexpression of Pax6 in the midbrain together with Shh pathway activation results in ectopic induction of cTh markers in clusters of cells that fail to integrate into tectal layers and of atypical long-range projections, whereas antagonizing Pax6 function in the thalamus disrupts cTh formation. However, rTh markers are negatively regulated by Pax6, which itself is down-regulated by Shh from the ZLI in this area. Our results demonstrate that the combinatorial expression of Irx3 and Pax6 endows cells with the competence for cTh formation, whereas Shh-mediated down-regulation of Pax6 is required for rTh formation. Thus, thalamus induction and patterning depends both on a prepattern of Irx3 and Pax6 expression that establishes differential cellular competence and on Shh signaling from the ZLI organizer.


Asunto(s)
Proteínas Aviares/metabolismo , Inducción Embrionaria/fisiología , Proteínas del Ojo/metabolismo , Neuronas GABAérgicas/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Tálamo/embriología , Factores de Transcripción/metabolismo , Animales , Embrión de Pollo , Clonación Molecular , Cartilla de ADN/genética , Electroporación , Técnica del Anticuerpo Fluorescente , Ácido Glutámico/metabolismo , Hibridación in Situ , Factor de Transcripción PAX6 , Tálamo/citología
3.
PLoS Biol ; 9(12): e1001218, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22180728

RESUMEN

Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas con Homeodominio LIM/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Prosencéfalo/embriología , Factores de Transcripción/fisiología , Proteínas Wnt/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Cadherinas/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/deficiencia , Proteínas con Homeodominio LIM/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Tubo Neural/fisiología , Protocadherinas , Transducción de Señal/fisiología , Tálamo/embriología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
4.
Trends Neurosci ; 33(8): 373-80, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20541814

RESUMEN

The thalamus is a central brain region that plays a crucial role in distributing incoming sensory information to appropriate regions of the cortex. The thalamus develops in the posterior part of the embryonic forebrain, where early cell fate decisions are controlled by a local signaling center - the mid-diencephalic organizer - which forms at the boundary between prospective prethalamus and thalamus. In this review we discuss recent observations of early thalamic development in zebrafish, chick, and mouse embryos, that reveal a conserved set of interactions between homeodomain transcription factors. These interactions position the organizer along the neuraxis. The most prominent of the organizer's signals, Sonic hedgehog, is necessary for conferring regional identity on the prethalamus and thalamus and for patterning their differentiation.


Asunto(s)
Tálamo/embriología , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Ratones , Transducción de Señal/genética , Tálamo/metabolismo , Factores de Transcripción/genética , Pez Cebra
5.
Proc Natl Acad Sci U S A ; 106(47): 19895-900, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19903880

RESUMEN

During vertebrate brain development, the onset of neuronal differentiation is under strict temporal control. In the mammalian thalamus and other brain regions, neurogenesis is regulated also in a spatially progressive manner referred to as a neurogenetic gradient, the underlying mechanism of which is unknown. Here we describe the existence of a neurogenetic gradient in the zebrafish thalamus and show that the progression of neurogenesis is controlled by dynamic expression of the bHLH repressor her6. Members of the Hes/Her family are known to regulate proneural genes, such as Neurogenin and Ascl. Here we find that Her6 determines not only the onset of neurogenesis but also the identity of thalamic neurons, marked by proneural and neurotransmitter gene expression: loss of Her6 leads to premature Neurogenin1-mediated genesis of glutamatergic (excitatory) neurons, whereas maintenance of Her6 leads to Ascl1-mediated production of GABAergic (inhibitory) neurons. Thus, the presence or absence of a single upstream regulator of proneural gene expression, Her6, leads to the establishment of discrete neuronal domains in the thalamus.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/fisiología , Neuronas/fisiología , Tálamo/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Técnicas de Silenciamiento del Gen , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tálamo/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
6.
Neural Dev ; 4: 35, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19732418

RESUMEN

BACKGROUND: Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. RESULTS: We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh) signalling from the zona limitans intrathalamica (ZLI), a known organising centre of forebrain development. CONCLUSION: The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.


Asunto(s)
Proteínas Aviares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Proteínas Wnt/metabolismo , Animales , Proteínas Aviares/genética , Embrión de Pollo , Diencéfalo/embriología , Diencéfalo/metabolismo , Electroporación , Espacio Extracelular/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/metabolismo , Hibridación in Situ , Espacio Intracelular/metabolismo , Transducción de Señal , Tálamo/embriología , Tálamo/metabolismo , Factores de Tiempo , Proteínas Wnt/genética
7.
Neural Dev ; 2: 25, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17999760

RESUMEN

BACKGROUND: The developing vertebrate brain is patterned first by global signalling gradients that define crude anteroposterior and dorsoventral coordinates, and subsequently by local signalling centres (organisers) that refine cell fate assignment within pre-patterned regions. The interface between the prethalamus and the thalamus, the zona limitans intrathalamica (ZLI), is one such local signalling centre that is essential for the establishment of these major diencephalic subdivisions by secreting the signalling factor Sonic hedgehog. Various models for ZLI formation have been proposed, but a thorough understanding of how this important local organiser is established is lacking. RESULTS: Here, we describe tissue explant experiments in chick embryos aimed at characterising the roles of different forebrain areas in ZLI formation. We found that: the ZLI becomes specified unexpectedly early; flanking regions are required for its characteristic morphogenesis; ZLI induction can occur independently from ventral tissues; interaction between any prechordal and epichordal neuroepithelial tissue anterior to the midbrain-hindbrain boundary is able to generate a ZLI; and signals from the dorsal diencephalon antagonise ZLI formation. We further show that a localised source of retinoic acid in the dorsal diencephalon is a likely candidate to mediate this inhibitory signal. CONCLUSION: Our results are consistent with a model where planar, rather than vertical, signals position the ZLI at early stages of neural development and they implicate retinoic acid as a novel molecular cue that determines its dorsoventral extent.


Asunto(s)
Tipificación del Cuerpo/fisiología , Diencéfalo/embriología , Diencéfalo/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Tretinoina/metabolismo , Animales , Trasplante de Tejido Encefálico/métodos , Embrión de Pollo , Coturnix , Diencéfalo/citología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Inhibidores de Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Mesencéfalo/citología , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/metabolismo , Neuronas/citología , Técnicas de Cultivo de Órganos , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Células Madre/citología , Células Madre/metabolismo , Tálamo/citología , Tálamo/embriología , Tálamo/metabolismo , Quimera por Trasplante
8.
Development ; 134(17): 3167-76, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17670791

RESUMEN

The thalamic complex is the major sensory relay station in the vertebrate brain and comprises three developmental subregions: the prethalamus, the thalamus and an intervening boundary region - the zona limitans intrathalamica (ZLI). Shh signalling from the ZLI confers regional identity of the flanking subregions of the ZLI, making it an important local signalling centre for regional differentiation of the diencephalon. However, our understanding of the mechanisms responsible for positioning the ZLI along the neural axis is poor. Here we show that, before ZLI formation, both Otx1l and Otx2 (collectively referred to as Otx1l/2) are expressed in spatially restricted domains. Formation of both the ZLI and the Irx1b-positive thalamus require Otx1l/2; embryos impaired in Otx1l/2 function fail to form these areas, and, instead, the adjacent pretectum and, to a lesser extent, the prethalamus expand into the mis-specified area. Conditional expression of Otx2 in these morphant embryos cell-autonomously rescues the formation of the ZLI at its correct location. Furthermore, absence of thalamic Irx1b expression, in the presence of normal Otx1l/2 function, leads to a substantial caudal broadening of the ZLI by transformation of thalamic precursors. We therefore propose that the ZLI is induced within the competence area established by Otx1l/2, and is posteriorly restricted by Irx1b.


Asunto(s)
Proteínas de Homeodominio/fisiología , Factores de Transcripción Otx/fisiología , Subtálamo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas de Homeodominio/genética , Modelos Biológicos , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Tálamo/embriología , Tálamo/metabolismo , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Development ; 133(5): 855-64, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16452095

RESUMEN

Midway between the anterior neural border and the midbrain-hindbrain boundary, two well-known local signalling centres in the early developing brain, is a further transverse boundary with putative signalling properties -- the zona limitans intrathalamica (ZLI). Here, we describe formation of the ZLI in zebrafish in relation to expression of sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), and to development of the forebrain regions that flank the ZLI: the prethalamus and thalamus. We find that enhanced Hh signalling increases the size of prethalamic and thalamic gene expression domains, whereas lack of Hh signalling leads to absence of these domains. In addition, we show that shh and twhh display both unique and redundant functions during diencephalic patterning. Genetic ablation of the basal plate shows that Hh expression in the ZLI alone is sufficient for diencephalic differentiation. Furthermore, acquisition of correct prethalamic and thalamic gene expression is dependent on direct Hh signalling. We conclude that proper maturation of the diencephalon requires ZLI-derived Hh signalling.


Asunto(s)
Tipificación del Cuerpo , Diencéfalo/embriología , Transactivadores/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Diencéfalo/citología , Diencéfalo/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Expresión Génica , Proteínas Hedgehog , Mutación , Transducción de Señal , Tálamo/citología , Tálamo/embriología , Tálamo/metabolismo , Transactivadores/genética , Activación Transcripcional , Proteínas Wnt/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA