Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 856(Pt 2): 159187, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36202363

RESUMEN

The continuous accumulation of chlorinated organic pollutants in soil poses a potential threat to ecosystems and human health alike. Alkali-catalyzed hydrothermal oxidation (HTO) can successfully remove chlorinated organic pollutants from water, but it is rarely applied to soil remediation. In this work, we assessed this technique to degrade and detoxify triclosan (TCS) in soil and we determined the underlying mechanisms. The results showed a dechlorination efficiency of TCS (100 mg per kg soil) of 49.03 % after 120 min reaction (H2O2/soil ratio 25 mL·g-1, reaction temperature 180 °C in presence of 1 g·L-1 NaOH). It was found that soil organic constituents (humic acid, HA) and inorganic minerals (SiO2, Al2O3, and CaCO3) suppressed the dechlorination degradation of TCS, with HA having the strongest inhibitory effect. During alkali-catalyzed HTO, the TCS molecules were effectively destroyed and humic acid-like or fulvic acid-like organics with oxygen functional groups were generated. Fluorescence spectroscopy analysis showed that hydroxyl radicals (OH) were the dominant reactive species of TCS degradation in soil. On the basis of the Fukui function and the degradation intermediates, two degradation pathways were proposed. One started with cleavage of the ether bond between the benzene rings of TCS, followed by dechlorination and the opening of benzene via oxidation. The other pathway started with direct hydroxylation of the benzene rings of TCS, after which they were opened and dechlorinated through oxidation. Analysis of the soil structure before and after treatment revealed that the soil surface changed from rough to smooth without affecting soil surface elements. Finally, biotoxicity tests proved that alkali-catalyzed HTO effectively reduced the toxicity of TCS-contaminated soil. This study suggests that alkali-catalyzed hydrothermal oxidation provides an environmentally friendly approach for the treatment of soil contaminated with chlorinated organics such as TCS.


Asunto(s)
Contaminantes Ambientales , Triclosán , Contaminantes Químicos del Agua , Humanos , Triclosán/metabolismo , Sustancias Húmicas , Suelo , Peróxido de Hidrógeno , Álcalis , Benceno , Ecosistema , Dióxido de Silicio , Catálisis , Contaminantes Químicos del Agua/análisis
2.
Alzheimers Dement (N Y) ; 5: 671-684, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31720368

RESUMEN

INTRODUCTION: Pharmacological therapies to treat Alzheimer's disease (AD) targeting "Aß" have failed for over 100 years. Low levels of laser light can disassemble Aß. In this study, we investigated the mechanisms that Aß-blocked extracellular space (ECS) induces memory disorders in APP/PS1 transgenic mice and addressed whether red light (RL) at 630 nm rescues cognitive decline by reducing Aß-disturbed flow of interstitial fluid (ISF). METHODS: We compared the heating effects on the brains of rats illuminated with laser light at 630, 680, and 810 nm for 40 minutes, respectively. Then, a light-emitting diode with red light at 630 nm (LED-RL) was selected to illuminate AD mice. The changes in the structure of ECS in the cortex were examined by fluorescent double labeling. The volumes of ECS and flow speed of ISF were quantified by magnetic resonance imaging. Spatial memory behaviors in mice were evaluated by the Morris water maze. Then, the brains were sampled for biochemical analysis. RESULTS: RL at 630 nm had the least heating effects than other wavelengths associated with ~49% penetration ratio into the brains. For the molecular mechanisms, Aß could induce formaldehyde (FA) accumulation by inactivating FA dehydrogenase. Unexpectedly, in turn, FA accelerated Aß deposition in the ECS. However, LED-RL treatment not only directly destroyed Aß assembly in vitro and in vivo but also activated FA dehydrogenase to degrade FA and attenuated FA-facilitated Aß aggregation. Subsequently, LED-RL markedly smashed Aß deposition in the ECS, recovered the flow of ISF, and rescued cognitive functions in AD mice. DISCUSSION: Aß-obstructed ISF flow is the direct reason for the failure of the developed medicine delivery from superficial into the deep brain in the treatment of AD. The phototherapy of LED-RL improves memory by reducing Aß-blocked ECS and suggests that it is a promising noninvasive approach to treat AD.

3.
Antioxid Redox Signal ; 30(11): 1432-1449, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29869529

RESUMEN

AIMS: Pharmacological treatments for Alzheimer's disease (AD) have not resulted in desirable clinical efficacy over 100 years. Hydrogen peroxide (H2O2), a reactive and the most stable compound of reactive oxygen species, contributes to oxidative stress in AD patients. In this study, we designed a medical device to emit red light at 630 ± 15 nm from a light-emitting diode (LED-RL) and investigated whether the LED-RL reduces brain H2O2 levels and improves memory in senescence-accelerated prone 8 mouse (SAMP8) model of age-related dementia. RESULTS: We found that age-associated H2O2 directly inhibited formaldehyde dehydrogenase (FDH). FDH inactivity and semicarbazide-sensitive amine oxidase (SSAO) disorder resulted in endogenous formaldehyde (FA) accumulation. Unexpectedly, excess FA, in turn, caused acetylcholine (Ach) deficiency by inhibiting choline acetyltransferase (ChAT) activity in vitro and in vivo. Interestingly, the 630 nm red light can penetrate the skull and the abdomen with light penetration rates of ∼49% and ∼43%, respectively. Illumination with LED-RL markedly activated both catalase and FDH in the brains, cultured cells, and purified protein solutions, all reduced brain H2O2 and FA levels and restored brain Ach contents. Consequently, LED-RL not only prevented early-stage memory decline but also rescued late-stage memory deficits in SAMP8 mice. INNOVATION: We developed a phototherapeutic device with 630 nm red light, and this LED-RL reduced brain H2O2 levels and reversed age-related memory disorders. CONCLUSIONS: The phototherapy of LED-RL has low photo toxicity and high rate of tissue penetration and noninvasively reverses aging-associated cognitive decline. This finding opens a promising opportunity to translate LED-RL into clinical treatment for patients with dementia. Antioxid. Redox Signal. 00, 000-000.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Catalasa/metabolismo , Formaldehído/metabolismo , Luz , Memoria/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Animales , Modelos Animales de Enfermedad , Formaldehído/efectos adversos , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/terapia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA