Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Chin Herb Med ; 16(1): 13-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38375043

RESUMEN

Medicinal plants are a valuable source of essential medicines and herbal products for healthcare and disease therapy. Compared with chemical synthesis and extraction, the biosynthesis of natural products is a very promising alternative for the successful conservation of medicinal plants, and its rapid development will greatly facilitate the conservation and sustainable utilization of medicinal plants. Here, we summarize the advances in strategies and methods concerning the biosynthesis and production of natural products of medicinal plants. The strategies and methods mainly include genetic engineering, plant cell culture engineering, metabolic engineering, and synthetic biology based on multiple "OMICS" technologies, with paradigms for the biosynthesis of terpenoids and alkaloids. We also highlight the biosynthetic approaches and discuss progress in the production of some valuable natural products, exemplifying compounds such as vindoline (alkaloid), artemisinin and paclitaxel (terpenoids), to illustrate the power of biotechnology in medicinal plants.

2.
Chin Herb Med ; 15(3): 369-375, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37538863

RESUMEN

Perilla frutescens, an annual herb of the Labiatae family, has been cultivated in China for more than 2000 years. P. frutescens is the one of the first medicinal and edible plant published by the Ministry of Health. Its leaves, stems and seeds can be used as medicine and edible food. Because of the abundant nutrients and bioactive components in this plant, P. frutescens has been studied extensively in medicine, food, health care and chemical fields with great prospects for development. This paper reviews the cultivation history, chemical compositions and pharmacological activities of P. frutescens, which provides a reference for the development and utilization of P. frutescens resources.

3.
Sci Rep ; 13(1): 2560, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781922

RESUMEN

In order to improve the functionality and additional value of agricultural products, this study developing nano-selenium fermentation broth and established a new application strategy of bio-nano-selenium by screening and identifying selenium-rich microorganisms. We isolated a new strain from tobacco waste and named it Bacillus subtilis SE201412 (GenBank accession no. OP854680), which could aerobically grow under the condition of 66,000 mg L-1 selenite concentration, and could convert 99.19% of selenite into biological nano-selenium (BioSeNPs) within 18 h. Using strain SE201412, we industrially produced the different concentrations of fermentation broth containing 5000-3000 mg L-1 pure selenium for commercial use. The synthesized selenium nanoparticles (SeNPs) were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). TEM and SEM results showed that SeNPs were distributed outside cells. NTA assay of fermentation broth indicated that the nanoparticles were spherical with an average particle size of 126 ± 0.5 nm. Toxicity test revealed that the median lethal dose (LD50) of the fermentation broth to mice was 2710 mg kg-1, indicating its low toxicity and high safety. In addition, we applied BioSeNP fermentation broth to rice and wheat through field experiments. The results showed that the application of fermentation broth significantly increased the total selenium content and organic selenium percentage in rice and wheat grains. Our findings provide valuable reference for the development of BioSeNPs with extensive application prospects.


Asunto(s)
Nanopartículas , Selenio , Animales , Ratones , Bacillus subtilis , Fermentación , Ácido Selenioso
4.
J Hazard Mater ; 450: 131008, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842201

RESUMEN

Medicinal plants have a wide range of uses worldwide. However, the quality of medicinal plants is affected by severe cadmium pollution. Cadmium can reduce photosynthetic capacity, lead to plant growth retardation and oxidative stress, and affect secondary metabolism. Medicinal plants have complex mechanisms to cope with cadmium stress. On the one hand, an antioxidant system can effectively scavenge excess reactive oxygen species produced by cadmium stress. On the other hand, cadmium chelates are formed by chelating peptides and then sequestered through vacuolar compartmentalization. Cadmium has no specific transporter in plants and is generally transferred to plant tissues through competition for the transporters of divalent metal ions, such as zinc, iron, and manganese. In recent years, progress has been achieved in exploring the physiological mechanisms by which medicinal plants responding to cadmium stress. The exogenous regulation of cadmium accumulation in medicinal plants has been studied, and the aim is reducing the toxicity of cadmium. However, research into molecular mechanisms is still lagging. In this paper, we review the physiological and molecular mechanisms and regulatory networks of medicinal plants exposed to cadmium, providing a reference for the study on the responses of medicinal plants to cadmium stress.


Asunto(s)
Cadmio , Plantas Medicinales , Cadmio/metabolismo , Plantas Medicinales/metabolismo , Zinc , Estrés Oxidativo , Manganeso , Estrés Fisiológico
5.
Plant Commun ; 4(3): 100516, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36597358

RESUMEN

Artemisia argyi Lévl. et Vant., a perennial Artemisia herb with an intense fragrance, is widely used in traditional medicine in China and many other Asian countries. Here, we present a chromosome-scale genome assembly of A. argyi comprising 3.89 Gb assembled into 17 pseudochromosomes. Phylogenetic and comparative genomic analyses revealed that A. argyi underwent a recent lineage-specific whole-genome duplication (WGD) event after divergence from Artemisia annua, resulting in two subgenomes. We deciphered the diploid ancestral genome of A. argyi, and unbiased subgenome evolution was observed. The recent WGD led to a large number of duplicated genes in the A. argyi genome. Expansion of the terpene synthase (TPS) gene family through various types of gene duplication may have greatly contributed to the diversity of volatile terpenoids in A. argyi. In particular, we identified a typical germacrene D synthase gene cluster within the expanded TPS gene family. The entire biosynthetic pathways of germacrenes, (+)-borneol, and (+)-camphor were elucidated in A. argyi. In addition, partial deletion of the amorpha-4,11-diene synthase (ADS) gene and loss of function of ADS homologs may have resulted in the lack of artemisinin production in A. argyi. Our study provides new insights into the genome evolution of Artemisia and lays a foundation for further improvement of the quality of this important medicinal plant.


Asunto(s)
Artemisia , Terpenos , Duplicación de Gen , Artemisia/genética , Filogenia , Cromosomas
6.
Ecotoxicol Environ Saf ; 242: 113849, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809394

RESUMEN

Groundwater may contain radioactive substances which can be dangerous to human health. Concentrations of natural radionuclides polonium (Po), thorium (Th), uranium (U), and radium (Ra) isotopes were measured in groundwater samples collected from different locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) site in Carlsbad, New Mexico. The average values of gross activity concentrations of 210Po, 228Th, 238U, 234U, 226Ra and 228 Ra isotopes were determined to be 1.62 Bq L-1 in shallow groundwater and 5.88 Bq L-1 in deep groundwater, respectively. The total radioactivity in deep groundwater was higher than that in shallow groundwater, and most of the radioactivity in the water is from 226Ra. Furthermore, the effective doses for ingestion of natural radionuclides were about 0.333 mSv y-1 for shallow groundwater and about 1.338 mSv y-1 for deep groundwater samples, which are higher than the World Health Organization (WHO, 2017) guideline level (0.1 mSv y-1) for drinking water. Ra dominated the total ingestion dose, contributing 93.06 % and 75.40 % of the total effective doses to the deep and shallow groundwater, respectively. The ingrowth and decay of natural radionuclides suggested that 228Ra/226Ra ratio can be a useful indicator of the source of radioactive contamination. The radioactivity data obtained from the investigated groundwater samples can be used to establish a baseline for radioactivity levels in groundwater around the WIPP site.


Asunto(s)
Agua Subterránea , Polonio , Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Uranio , Contaminantes Radiactivos del Agua , Humanos , Polonio/análisis , Radioisótopos/análisis , Radio (Elemento)/análisis , Torio/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
7.
Chin Med ; 17(1): 33, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246186

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene editing technology has opened a new era of genome interrogation and genome engineering because of its ease operation and high efficiency. An increasing number of plant species have been subjected to site-directed gene editing through this technology. However, the application of CRISPR-Cas technology to medicinal plants is still in the early stages. Here, we review the research history, structural characteristics, working mechanism and the latest derivatives of CRISPR-Cas technology, and discussed their application in medicinal plants for the first time. Furthermore, we creatively put forward the development direction of CRISPR technology applied to medicinal plant gene editing. The aim is to provide a reference for the application of this technology to genome functional studies, synthetic biology, genetic improvement, and germplasm innovation of medicinal plants. CRISPR-Cas is expected to revolutionize medicinal plant biotechnology in the near future.

8.
BMC Genomics ; 22(1): 315, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933003

RESUMEN

BACKGROUND: ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. RESULTS: A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. CONCLUSIONS: Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza.


Asunto(s)
Salvia miltiorrhiza , Transportadoras de Casetes de Unión a ATP/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Raíces de Plantas/genética , Salvia miltiorrhiza/genética
9.
J Ethnopharmacol ; 274: 114052, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33753147

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis (Huang-Qin in Chinese) is a dry root of the perennial herb Scutellaria baicalensis Georgi, which has been used extensively in current prescriptions. Scutellaria baicalensis is an herb high in flavonoids, and baicalein is the one flavonoid found in the highest amount in Scutellaria baicalensis. AIM OF THE STUDY: Influenza virus could cause mild respiratory tract illness to severe pneumonia and even death. Baicalein has been proved to be one of the effective components against the influenza virus. However, there have been few reports on human trials of baicalein. The purpose of this study was to evaluate the safety of baicalein in vivo and analyze its pharmacokinetic characteristics. MATERIALS AND METHODS: Three randomized studies were conducted to evaluate the pharmacokinetics (PK), safety, tolerability, and food effects of baicalein tablets. In the 7-month single-dose safety study, 60 subjects were enrolled and randomized to receive 100-800 mg baicalein tablets or placebo. In the single-dose PK study, 40 subjects were enrolled and randomized to receive 200 mg, 400 mg, 600 mg, 800 mg baicalein tablets. In the study of food effect on PK of baicalein, an additional 10 subjects were enrolled in the 400 mg group, this part of the trial lasted for 7 months. Blood and urine samples for PK analysis were collected at a pre-specified time. PK properties in both fasted and fed states were evaluated, as well as safety and tolerability. RESULTS: Among the 80 subjects who were evaluable for the single-dose safety and tolerability, 56 adverse events (AEs) were observed in 32/80 subjects, of which 49 events were from 28/68 subjects in baicalein group and 7 events were from 4/12 subjects in placebo group. All AEs were mild and resolved without any medical intervention. The most common AEs were elevated high-sensitivity C-reactive protein (hs-CRP) level and high triglycerides. After a single administration of baicalein tablets (200 mg, 400 mg, 600 mg, or 800 mg), Cmax were 280.44, 628.80, 845.20, 489.55 ng/mL; AUC0-∞ were 2035.57, 2939.31, 4494.88, and 3754.43 h*ng/mL, respectively. And t1/2z ranged from 7.80 to 14.91 h. The exposure of baicalein and its metabolites increased in a less than dose-proportional manner. CONCLUSION: Baicalein tablets within the studied dose range were safe and well-tolerated in healthy Chinese subjects with no serious or severe adverse effects. Further investigation will be needed to assess the safety and efficacy in the target patients.


Asunto(s)
Flavanonas/farmacocinética , Interacciones Alimento-Droga , Adulto , Pueblo Asiatico , Método Doble Ciego , Ayuno/metabolismo , Femenino , Flavanonas/efectos adversos , Flavanonas/sangre , Flavanonas/orina , Voluntarios Sanos , Humanos , Masculino , Comprimidos , Adulto Joven
10.
J Genet ; 992020.
Artículo en Inglés | MEDLINE | ID: mdl-32089530

RESUMEN

The endangered medicinal plant Glehnia littoralis is one of the important natural source of furanocoumarin, which has been used as mucolytic, antitussive, antitumour and antibacterial. However, the genetic information of furanocoumarin biosynthesis in G. littoralis is scarce at present. The objective of this study was to mine the putative candidate genes involved in the biosynthesis pathwayof furanocoumarin and provide references for gene identification, and functional genomics of G. littoralis. We carried out the transcriptome analysis of leaves and roots in G. littoralis, which provided a dataset for gene mining. Psoralen, imperatorin and isoimperatorin were detected in G. littoralis by high performance liquid chromatography analysis. Candidate key genes were mined based on the annotations and local BLAST with homologous sequences using BioEdit software. The relative expression of genes was analysed using quantitative real-time polymerase chain reaction. Further, the CYP450 genes were mined using phylogenetic analyses using MEGA 6.0 software. Atotal of 156,949 unigenes were generated, of which 9021 were differentially-expressed between leaves and roots. A total of 82 unigenes encoding eight enzymes in furanocoumarin biosynthetic pathway were first obtained. Seven genes that encoded key enzymes in the downstream furanocoumarin biosynthetic pathway and expressed more in roots than leaves were screened. Twenty-six candidate CYP450 unigenes expressed abundantly in roots and were chiefly concentrated in CYP71, CYP85 and CYP72 clans. Finally, we filtered 102 differentially expressed transcription factors (TFs) unigenes. The transcriptome of G. littoralis was characterized which would help to elucidate the furanocoumarin biosynthetic pathway in G. littoralis and provide an invaluable resource for further study of furanocoumarin.


Asunto(s)
Apiaceae/genética , Apiaceae/metabolismo , Vías Biosintéticas/genética , Furocumarinas/biosíntesis , Perfilación de la Expresión Génica , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Apiaceae/clasificación , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular , Filogenia , Plantas Medicinales/clasificación , Transcriptoma
11.
Chin Herb Med ; 12(3): 237-246, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36119017

RESUMEN

Objective: Salvia miltiorrhiza is a valuable herbal medicine with tanshinone and phenolic acid as the main biological active ingredients. The biosynthetic regulation of these bioactive compounds is controlled by a set of transcription factors (TFs). The basic helix-loop-helix (bHLH) transcription factor plays an important role in various physiological and biochemical processes in plants. However, research on bHLH TFs regulating phenolic acid or tanshinone biosynthesis in S. miltiorrhiza is limited. Methods: qRT-PCR was used for gene expression analysis. The subcellular localization of SmbHLH92 was detected by SmbHLH92-GFP transient transformation into tobacco leaves, and its fluorescence was observed using a confocal laser scanning microscope. The transcriptional activity of SmbHLH92 was confirmed in the AH109 yeast strain. RNA interference hairy roots of SmbHLH92-RNAi transgenic lines were obtained through Agrobacterium-mediated genetic transformation. Ultra performance liquid chromatography (UPLC) was used to detect the changes of phenolic acids and tanshinones. Results: SmbHLH92 is a bHLH transcription factor that is highly expressed in the root and phloem of S. miltiorrhiza. The subcellular localization and transcriptional activity of SmbHLH92 indicated that SmbHLH92 was located in the nucleus and may be a transcription factor. RNA interference (RNAi) of SmbHLH92 in hairy roots of S. miltiorrhiza significantly increased the accumulation of phenolic acid and tanshinone. Quantitative RT-PCR (RT-qPCR) analysis showed the transcription level of genes encoding the key enzymes involved in the phenolic acid and tanshinone biosynthetic pathways was increased in the hairy roots of the SmbHLH92-RNAi transgenic line, comparing with the control line. Conclusion: These data indicate that SmbHLH92 is a negative regulator involved in the regulation of phenolic acid and tanshinone biosynthesis in S. miltiorrhiza.

12.
Plant Physiol ; 180(4): 1988-2003, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31221734

RESUMEN

Carotenoids exert multifaceted roles to plants and are critically important to humans. Phytoene synthase (PSY) is a major rate-limiting enzyme in the carotenoid biosynthetic pathway. PSY in plants is normally found as a small enzyme family with up to three members. However, knowledge of PSY isoforms in relation to their respective enzyme activities and amino acid residues that are important for PSY activity is limited. In this study, we focused on two tomato (Solanum lycopersicum) PSY isoforms, PSY1 and PSY2, and investigated their abilities to catalyze carotenogenesis via heterologous expression in transgenic Arabidopsis (Arabidopsis thaliana) and bacterial systems. We found that the fruit-specific PSY1 was less effective in promoting carotenoid biosynthesis than the green tissue-specific PSY2. Examination of the PSY proteins by site-directed mutagenesis analysis and three-dimensional structure modeling revealed two key amino acid residues responsible for this activity difference and identified a neighboring aromatic-aromatic combination in one of the PSY core structures as being crucial for high PSY activity. Remarkably, this neighboring aromatic-aromatic combination is evolutionarily conserved among land plant PSYs except PSY1 of tomato and potato (Solanum tuberosum). Strong transcription of tomato PSY1 likely evolved as compensation for its weak enzyme activity to allow for the massive carotenoid biosynthesis in ripe fruit. This study provides insights into the functional divergence of PSY isoforms and highlights the potential to rationally design PSY for the effective development of carotenoid-enriched crops.


Asunto(s)
Frutas/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum tuberosum/metabolismo , Frutas/enzimología , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Solanum lycopersicum/enzimología , Proteínas de Plantas/genética , Solanum tuberosum/enzimología , Solanum tuberosum/genética
13.
Acta Pharm Sin B ; 8(2): 295-305, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29719790

RESUMEN

Tanshinones are a class of bioactive components in the traditional Chinese medicine Salvia miltiorrhiza, and their biosynthesis and regulation have been widely studied. Current studies show that basic leucine zipper (bZIP) proteins regulate plant secondary metabolism, growth and developmental processes. However, the bZIP transcription factors involved in tanshinone biosynthesis are unknown. Here, we conducted the first genome-wide survey of the bZIP gene family and analyzed the phylogeny, gene structure, additional conserved motifs and alternative splicing events in S. miltiorrhiza. A total of 70 SmbZIP transcription factors were identified and categorized into 11 subgroups based on their phylogenetic relationships with those in Arabidopsis. Moreover, seventeen SmbZIP genes underwent alternative splicing events. According to the transcriptomic data, the SmbZIP genes that were highly expressed in the Danshen root and periderm were selected. Based on the prediction of bZIP binding sites in the promoters and the co-expression analysis and co-induction patterns in response to Ag+ treatment via quantitative real-time polymerase chain reaction (qRT-PCR), we concluded that SmbZIP7 and SmbZIP20 potentially participate in the regulation of tanshinone biosynthesis. These results provide a foundation for further functional characterization of the candidate SmbZIP genes, which have the potential to increase tanshinone production.

14.
Chin Med ; 11: 37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27478496

RESUMEN

Medicinal plants are globally valuable sources of herbal products, and they are disappearing at a high speed. This article reviews global trends, developments and prospects for the strategies and methodologies concerning the conservation and sustainable use of medicinal plant resources to provide a reliable reference for the conservation and sustainable use of medicinal plants. We emphasized that both conservation strategies (e.g. in situ and ex situ conservation and cultivation practices) and resource management (e.g. good agricultural practices and sustainable use solutions) should be adequately taken into account for the sustainable use of medicinal plant resources. We recommend that biotechnical approaches (e.g. tissue culture, micropropagation, synthetic seed technology, and molecular marker-based approaches) should be applied to improve yield and modify the potency of medicinal plants.

15.
Physiol Plant ; 158(1): 80-91, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27152969

RESUMEN

Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well as on S level in seven wheat lines were examined. Low dosages of both selenate and selenite supplements were found to enhance wheat shoot biomass and show no inhibitory effect on grain production. The stimulation on plant growth was correlated with increased APX antioxidant enzyme activity. Se forms were found to exert different effects on S metabolism in wheat plants. Selenate treatment promoted S accumulation, which was not observed with selenite supplement. An over threefold increase of S levels following selenate treatment at low dosages was observed in shoots of all wheat lines. Analysis of the sulfate transporter gene expression revealed an increased transcription of SULTR1;1, SULTR1;3 and SULTR4;1 in roots following 10 µM Na2 SeO4 treatment. Mass spectrometry-based targeted protein quantification confirmed the gene expression results and showed enhanced protein levels. The results suggest that Se treatment mimics S deficiency to activate specific sulfate transporter expression to stimulate S uptake, resulting in the selenate-induced S accumulation. This study supports that plant growth and nutrition benefit from low dosages of Se fertilization and provides information on the basis underlying Se-induced S accumulation in plants.


Asunto(s)
Micronutrientes/metabolismo , Selenio/farmacología , Azufre/metabolismo , Triticum/efectos de los fármacos , Antioxidantes/metabolismo , Biomasa , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 41(22): 4158-4164, 2016 Nov.
Artículo en Chino | MEDLINE | ID: mdl-28933082

RESUMEN

Using the latest 454 GS FLX platform and Titanium regent, a substantial expressed sequence tag (ESTs) dataset of Ephedra sinica was produced, and the profile of gene expression and function gene of which were investigated. A total of 48 389 reads with an average length of 373 bp were generated. These 454 reads were assembled into 18 801 unigenes, which were all 454 sequencing identified. A total number of 10 531 unigenes(56.0%) were annotated using BLAST searches (E-value≤1×10⁻5) against the Nr, Nt, TAIR, SwissProt and KEGG databases. With respect to genes related to ephedrine biosynthesis, 19 unigenes(encoding 9 enzymes) were found. A total of 97 putative genes encoding cytochrome P450s were also discovered. Data presented in this study will provide an important resource for the scientific community that is interested in the functional genomics and secondary metabolism of E. sinica.


Asunto(s)
Ephedra sinica/genética , Etiquetas de Secuencia Expresada , Transcriptoma , Perfilación de la Expresión Génica , Genes de Plantas , Metabolismo Secundario , Análisis de Secuencia de ADN
18.
Zhongguo Zhong Yao Za Zhi ; 41(22): 4169-4174, 2016 Nov.
Artículo en Chino | MEDLINE | ID: mdl-28933084

RESUMEN

The open reading frame of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR) was cloned from Phlegmarirus carinatus by RT-PCR method and the sequence was analyzed by bioinformatics tools. After searching the transcriptome dataset of P. carinatus, one unique sequence encoding 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase was discovered. The primers were designed according to the cDNA sequence of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase from the dataset. And then, the open reading frame (ORF) of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase, named as PcHDR1 (GenBank Accession number:JQ957845), was cloned by RT-PCR strategy with the template of mixed RNA extracted from roots, stem and leaf of P. carinatus. The bioinformatic analysis of this gene and its corresponding protein was performed. The ORF of PcHDR1 consisted of 1 437 base pairs (bp), encoding one polypeptide with 478 amino acids. The sequence comparison showed that PcHDR1 is closest with GbHDR (Ginkgo biloba),and the sequence homology was up to 78%. Bioinformatics prediction and analysis indicated that PcHDR1 protein contained a conserved domain of LytB, without transmembrane region and signal peptides. This study cloned and analyzed 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase from P. carinatus. The result will provide a foundation for exploring the function of PcHDR1 involved in terpene biosynthesis in P. carinatus plants.


Asunto(s)
Lycopodiaceae/enzimología , Lycopodiaceae/genética , Oxidorreductasas/genética , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional , ADN Complementario , Genes de Plantas , Filogenia
19.
Sci Rep ; 5: 11244, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26174967

RESUMEN

Salvia miltiorrhiza Bunge (Labiatae) is an emerging model plant for traditional medicine, and tanshinones are among the pharmacologically active constituents of this plant. Although extensive chemical and pharmaceutical studies of these compounds have been performed, studies on the basic helix-loop-helix (bHLH) transcription factors that regulate tanshinone biosynthesis are limited. In our study, 127 bHLH transcription factor genes were identified in the genome of S. miltiorrhiza, and phylogenetic analysis indicated that these SmbHLHs could be classified into 25 subfamilies. A total of 19 sequencing libraries were constructed for expression pattern analyses using RNA-Seq. Based on gene-specific expression patterns and up-regulated expression patterns in response to MeJA treatment, 7 bHLH genes were revealed as potentially involved in the regulation of tanshinone biosynthesis. Among them, the gene expression of SmbHLH37, SmbHLH74 and SmbHLH92 perfectly matches the accumulation pattern of tanshinone biosynthesis in S. miltiorrhiza. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of bHLH transcription factors in S. miltiorrhiza.


Asunto(s)
Abietanos/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Genes de Plantas , Proteínas de Plantas/genética , Salvia miltiorrhiza/genética , Acetatos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , ARN de Planta/química , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Salvia miltiorrhiza/metabolismo , Análisis de Secuencia de ARN , Transcriptoma/efectos de los fármacos
20.
Sci Rep ; 5: 11087, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26046933

RESUMEN

Fungi have evolved powerful genomic and chemical defense systems to protect themselves against genetic destabilization and other organisms. However, the precise molecular basis involved in fungal defense remain largely unknown in Basidiomycetes. Here the complete genome sequence, as well as DNA methylation patterns and small RNA transcriptomes, was analyzed to provide a holistic overview of secondary metabolism and defense processes in the model medicinal fungus, Ganoderma sinense. We reported the 48.96 Mb genome sequence of G. sinense, consisting of 12 chromosomes and encoding 15,688 genes. More than thirty gene clusters involved in the biosynthesis of secondary metabolites, as well as a large array of genes responsible for their transport and regulation were highlighted. In addition, components of genome defense mechanisms, namely repeat-induced point mutation (RIP), DNA methylation and small RNA-mediated gene silencing, were revealed in G. sinense. Systematic bioinformatic investigation of the genome and methylome suggested that RIP and DNA methylation combinatorially maintain G. sinense genome stability by inactivating invasive genetic material and transposable elements. The elucidation of the G. sinense genome and epigenome provides an unparalleled opportunity to advance our understanding of secondary metabolism and fungal defense mechanisms.


Asunto(s)
Ganoderma/genética , Genoma Fúngico , Mapeo Cromosómico , Cromosomas Fúngicos/química , Cromosomas Fúngicos/metabolismo , Metilación de ADN , Elementos Transponibles de ADN/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Ganoderma/clasificación , Silenciador del Gen , Familia de Multigenes , Filogenia , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA