Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancer Med ; 12(12): 13352-13360, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37156624

RESUMEN

BACKGROUND: Standard treatment of locally advanced rectal cancer (LARC) was neoadjuvant chemoradiotherapy (CRT), followed by total mesorectal excision (TME). Total neoadjuvant treatment (TNT), a new concept, attempts to deliver both systemic chemotherapy and neoadjuvant CRT prior to surgery. Patients treated with neoadjuvant chemotherapy were more likely to show higher tumor regression. The objective of this trial was to increase complete clinical rate (cCR) for LARC patients by optimizing tumor response, using TNT regimen as compared to conventional chemoradiotherapy. TESS, a prospective, open-label, multicenter, single-arm, phase 2 study, is underway. METHODS: Main inclusion criteria include cT3-4aNany or cT1-4aN+ rectal adenocarcinoma aged 18-70y; Eastern Cooperative Oncology Group (ECOG) performance 0-1; location ≤5 cm from anal verge. Ninety-eight patients will receive 2 cycles of neoadjuvant chemotherapy Capeox (capecitabine + oxaliplatin) before, during, and after radiotherapy 50Gy/25 fractions, before TME (or other treatment decisions, such as Watch and Wait strategy) and adjuvant chemotherapy capecitabine 2 cycles. Primary endpoint is the cCR rate. Secondary endpoints include ratio of sphincter preservation strategy; pathological complete response rate and tumor regression grade distribution; local recurrence or metastasis; disease-free survival; locoregional recurrence-free survival; acute toxicity; surgical complications; long-term anal function; late toxicity; adverse effect, ECOG standard score, and quality of life. Adverse events are graded per Common Terminology Criteria for Adverse Events V5.0. Acute toxicity will be monitored during antitumor treatment, and late toxicity will be monitored for 3 years from the end of the first course of antitumor treatment. DISCUSSION: The TESS trial aims to explore a new TNT strategy, which is expected to increase the rate of cCR and sphincter preservation rate. This study will provide new options and evidence for a new sandwich TNT strategy in patients with distal LARC.


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias del Recto , Humanos , Terapia Neoadyuvante/métodos , Capecitabina , Resultado del Tratamiento , Estudios Prospectivos , Calidad de Vida , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Quimioradioterapia/métodos , Oxaliplatino/uso terapéutico , Neoplasias Primarias Secundarias/patología , Estadificación de Neoplasias , Fluorouracilo/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Estudios Multicéntricos como Asunto
2.
Front Immunol ; 14: 1149122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033988

RESUMEN

For local advanced rectal cancer (LARC), total neoadjuvant treatment (TNT) has shown more complete response (CR), reduced risk of distant metastasis (DM) and increase of the sphincter preservation rate. Now it is the one and only recommendation for high-risk group of LARC according to National Comprehensive Cancer Network (NCCN) rectal cancer guideline, while it is also preferentially recommended for low-risk group of LARC. TNT is also beneficial for distant rectal cancer patients who have need for organ preservation. Even though the prognostic value of programmed cell death-ligand 1 (PD-L1) in the neoadjuvant chemoradiotherapy (NACRT) of LARC patients is undetermined yet, the combination of NACRT and programmed cell death-1 (PD-1)/PD-L1 antibodies seem bring new hope for mismatch repair proficient (pMMR)/microsatellite stable (MSS) LARC patients. Accumulating small sample sized studies have shown that combining NACRT with PD-1/PD-L1 antibody yield better short-term outcomes for pMMR/MSS LARC patients than historic data. However, ideal total dose and fractionation of radiotherapy remains one of unresolved issues in this combination setting. Thorough understanding the impact of radiotherapy on the tumor microenvironment and their interaction is needed for in-depth understanding and exquisite design of treatments combination model.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Humanos , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Quimioradioterapia , Neoplasias del Recto/patología , Apoptosis , Microambiente Tumoral
3.
Mol Pharm ; 16(3): 1312-1326, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30721081

RESUMEN

The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca2+ cellular dynamics, trans-endothelial electrical resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies. Intracellular Ca2+ levels were increased by heat and CBD and blocked by the nonspecific TRP antagonist ruthenium red (RR) and the selective TRPV2 inhibitor tranilast (TNL) or by silencing cells with TRPV2 siRNA. CBD dose-dependently induced the hCMEC/D3 cell number (EC50 0.3 ± 0.1 µM), and this effect was fully abolished by TNL or TRPV2 siRNA. A wound healing assay showed that CBD induced cell migration, which was also inhibited by TNL or TRPV2 siRNA. Tubulogenesis of hCMEC/D3 cells in 3D matrigel cultures was significantly increased by 41 and 73% after a 7 or 24 h CBD treatment, respectively, and abolished by TNL. CBD also increased the TEER of hPBMEC monolayers cultured in transwell, and this was blocked by TNL. Our results show that CBD, at extracellular concentrations close to those observed in plasma of patients treated by CBD, induces proliferation, migration, tubulogenesis, and TEER increase in human brain endothelial cells, suggesting CBD might be a potent target for modulating the human BBB.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Cannabidiol/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Microvasos/patología , Canales Catiónicos TRPV/metabolismo , Barrera Hematoencefálica/metabolismo , Calcio/metabolismo , Cannabis/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Impedancia Eléctrica , Calor , Humanos , Extractos Vegetales/farmacología , Rojo de Rutenio/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , ortoaminobenzoatos/farmacología
4.
Environ Sci Pollut Res Int ; 24(6): 5509-5520, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28028705

RESUMEN

ABS resin wastewater is a high-temperature nitrogenous organic wastewater. It can be successfully treated with anoxic/aerobic (A/O) process. In this study, the effect of temperature on nitrogen removal and microbial community after quick temperature rise (QTR) was investigated. It was indicated that QTR from 25 to 30 °C facilitated the microbial growth and achieved a similar effluent quality as that at 25 °C. QTR from 25 to 35 °C or 40 °C resulted in higher effluent concentration of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN), and total phosphorus (TP). Illumina MiSeq pyrosequencing analysis illustrated that the richness and diversity of the bacterial community was decreased as the temperature was increased. The percentage of many functional groups was changed significantly. QTR from 25 to 40 °C also resulted in the inhibition of ammonia oxidation rate and high concentration of free ammonia, which then inhibited the growth of NOB (Nitrospira), and thus resulted in nitrite accumulation. The high temperature above 35 °C promoted the growth of a denitrifying bacterial genus, Denitratisoma, which might increase N2O production during the denitrification process.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Resinas Acrílicas , Amoníaco/análisis , Reactores Biológicos/microbiología , Butadienos , Desnitrificación , Nitritos/análisis , Nitrógeno/análisis , Fósforo/análisis , Poliestirenos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA