Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 47(4): 988-1000, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35285199

RESUMEN

This study explored the mechanism of Shenling Baizhu Powder(SLBZP) in the prevention and treatment of type 2 diabetes from the perspective of flora disorder and chronic inflammation. Fifty rats were randomly divided into normal control group, model control group, low-dose SLBZP group, medium-dose SLBZP group, and high-dose SLBZP group, with 10 rats in each group. The rats of 5 weeks old were administrated by gavage with ultrapure water and different doses of SLBZP decoction. The basic indicators such as body weight and blood glucose were monitored every week, and stool and intestinal contents were collected from the rats of 9 weeks old for 16 S rRNA sequencing and metabolomic analysis. An automatic biochemical analyzer was used to measure the serum biochemical indicators, ELISA to measure serum insulin, and chipsets to measure leptin and inflammatory cytokines. The results showed that SLBZP reduced the body weight as well as blood glucose, glycosylated hemoglobin, and lipid levels. In the rats of 9 weeks, the relative abundance of Anaerostipes, Turicibacter, Bilophila, Ochrobactrum, Acinetobacter, and Prevotella decreased significantly in the model control group, which can be increased in the high-dose SLBZP group; the relative abundance of Psychrobacter, Lactobacillus, Roseburia and Staphylococcus significantly increased in the model control group, which can be down-regulated in the high-dose SLBZP group. The differential metabolites of intestinal flora included 4-hydroxyphenylpyruvic acid, phenylpyruvic acid, octanoic acid, 3-indolepropionic acid, oxoglutaric acid, malonic acid, 3-methyl-2-oxovaleric acid, and methylmalonic acid. Moreover, SLBZP significantly lowered the levels of free insulin, insulin resistance and leptin resistance in rats. The variations in the serum levels of interleukin 1ß(IL-1ß) and monocyte chemoattractant protein-1(MCP-1) showed that SLBZP could alleviate chronic inflammation in rats. In conclusion, SLBZP can regulate intestinal flora and metabolites and relieve chronic inflammation to control obesity and prevent type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Insulina , Polvos , Ratas
2.
Front Pharmacol ; 12: 647529, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366839

RESUMEN

Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA