Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin J Nat Med ; 21(12): 938-949, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38143107

RESUMEN

Danshen, the dried roots and rhizomes of Salvia miltiorrhiza Bunge (S. miltiorrhiza), is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tanshinones, the bioactive compounds from Danshen, exhibit a wide spectrum of pharmacological properties, suggesting their potential for future therapeutic applications. Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized, most of which belong to the CYP76 and CYP71 families. In this study, CYP81C16, a member of the CYP71 clan, was identified in S. miltiorrhiza. An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones, namely neocryptotanshinone, deoxyneocryptotanshinone, and danshenxinkuns A and B. SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%. Kinetic evaluations andin vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates. The overexpression of SmCYP81C16 promoted the accumulation of (iso)tanshinone in hairy root lines. The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones, either through microbial or plant metabolic engineering.


Asunto(s)
Salvia miltiorrhiza , Humanos , Salvia miltiorrhiza/metabolismo , Vías Biosintéticas , Quinonas/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Physiol Biochem ; 160: 404-412, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33571807

RESUMEN

Salvia miltiorrhiza is one of the most commonly used medicinal materials in China. In recent years, the quality of S. miltiorrhiza has attracted much attention. Biotic and abiotic elicitors are widely used in cultivation to improve the quality of medicinal plants. We isolated an endophytic fungus, Mucor fragilis, from S. miltiorrhiza. We compared the effects of endophytic fungal elicitors with those of yeast extract together with silver ion, widely used together as effective elicitors, on S. miltiorrhiza hairy roots. Seventeen primary metabolites (amino acids and fatty acids) and five secondary metabolites (diterpenoids and phenolic acids) were analyzed after elicitor treatment. The mycelium extract promoted the accumulation of salvianolic acid B, rosmarinic acid, stearic acid, and oleic acid in S. miltiorrhiza hairy roots. Additionally, qPCR revealed that elicitors affect the accumulation of primary and secondary metabolites by regulating the expression of key genes (SmAACT, SmGGPPS, and SmPAL). This is the first detection of both the primary and secondary metabolites of S. miltiorrhiza hairy roots, and the results of this work should help guide the quality control of S. miltiorrhiza. In addition, the findings confirm that Mucor fragilis functions as an effective endophytic fungal elicitor with excellent application prospect for cultivation of medicinal plants.


Asunto(s)
Mucor/química , Fitoquímicos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Salvia miltiorrhiza/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Medicinales/metabolismo , Plantas Medicinales/microbiología , Salvia miltiorrhiza/microbiología
3.
Pharmacol Res ; 159: 104985, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32504839

RESUMEN

The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has drawn increasing attention, and the benefits of various treatment strategies, including nutrition, medication and physical exercise, maybe microbially-mediated. Metformin is a widely used hypoglycemic agent, while resistant starch (RS) is a novel dietary fiber that emerges as a nutritional strategy for metabolic disease. However, it remains unclear as to the potential degree and interactions among gut microbial communities, metabolic landscape, and the anti-diabetic effects of metformin and RS, especially for a novel type 3 resistant starch from Canna edulis (Ce-RS3). In the present study, T2DM rats were administered metformin or Ce-RS3, and the changes in gut microbiota and serum metabolic profiles were characterized using 16S-rRNA gene sequencing and metabolomics, respectively. After 11 weeks of treatment, Ce-RS3 exhibited similar anti-diabetic effects to those of metformin, including dramatically reducing blood glucose, ameliorating the response to insulin resistance and glucose tolerance test, and relieving the pathological damage in T2DM rats. Interestingly, the microbial and systemic metabolic dysbiosis in T2DM rats was effectively modulated by both Ce-RS3 and, to a lesser extent, metformin. The two treatments increased the gut bacterial diversity, and supported the restoration of SCFA-producing bacteria, thereby significantly increasing SCFAs levels. Both treatments simultaneously corrected 16 abnormal metabolites in the metabolism of lipids and amino acids, many of which are microbiome-related. PICRUSt analysis and correlation of SCFAs levels with metabolomics data revealed a strong association between gut microbial and host metabolic changes. Strikingly, Ce-RS3 exhibited better efficacy in increasing gut microbiota diversity with a peculiar enrichment of Prevotella genera. The gut microbial properties of Ce-RS3 were tightly associated with the T2DM-related indexes, showing the potential to alleviate diabetic phenotype dysbioses, and possibly explaining the greater efficiency in improving metabolic control. The beneficial effects of Ce-RS3 and metformin might derive from changes in gut microbiota through altering host-microbiota interactions with impact on the host metabolome. Given the complementarity of Ce-RS3 and metformin in regulation of gut microbiota and metabolites, this study also prompted us to suggest possible "Drug-Dietary fiber" combinations for managing T2DM.


Asunto(s)
Bacterias/efectos de los fármacos , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Microbioma Gastrointestinal/efectos de los fármacos , Hipoglucemiantes/farmacología , Intestinos/microbiología , Metaboloma , Metformina/farmacología , Almidón Resistente/administración & dosificación , Animales , Bacterias/genética , Bacterias/metabolismo , Biomarcadores/sangre , Glucemia/metabolismo , Cromatografía Liquida , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/microbiología , Dieta Alta en Grasa , Disbiosis , Ácidos Grasos/sangre , Control Glucémico , Metabolómica , Ratas Sprague-Dawley , Almidón Resistente/metabolismo , Ribotipificación , Espectrometría de Masa por Ionización de Electrospray , Estreptozocina , Zingiberales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA