Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(2): 421-431, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38357273

RESUMEN

In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1ß, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-ß1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.

2.
World J Gastroenterol ; 30(1): 91-107, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38293320

RESUMEN

BACKGROUND: The pathogenicity of Helicobacter pylori is dependent on factors including the environment and the host. Although selenium is closely related to pathogenicity as an environmental factor, the specific correlation between them remains unclear. AIM: To investigate how selenium acts on virulence factors and reduces their toxicity. METHODS: H. pylori strains were induced by sodium selenite. The expression of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin gene A (VacA) was determined by quantitative PCR and Western blotting. Transcriptomics was used to analyze CagA, CagM, CagE, Cag1, Cag3, and CagT. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction, and H. pylori colonization, inflammatory reactions, and the cell adhesion ability of H. pylori were assessed. RESULTS: CagA and VacA expression was upregulated at first and then downregulated in the H. pylori strains after sodium selenite treatment. Their expression was significantly and steadily downregulated after the 5th cycle (10 d). Transcriptome analysis revealed that sodium selenite altered the levels affect H. pylori virulence factors such as CagA, CagM, CagE, Cag1, Cag3, and CagT. Of these factors, CagM and CagE expression was continuously downregulated and further downregulated after 2 h of induction with sodium selenite. Moreover, CagT expression was upregulated before the 3rd cycle (6 d) and significantly downregulated after the 5th cycle. Cag1 and Cag3 expression was upregulated and downregulated, respectively, but no significant change was observed by the 5th cycle. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction. The extent of H. pylori colonization in the stomach increased; however, sodium selenite also induced a mild inflammatory reaction in the gastric mucosa of H. pylori-infected mice, and the cell adhesion ability of H. pylori was significantly weakened. CONCLUSION: These results demonstrate that H. pylori displayed virulence attenuation after the 10th d of sodium selenite treatment. Sodium selenite is a low toxicity compound with strong stability that can reduce the cell adhesion ability of H. pylori, thus mitigating the inflammatory damage to the gastric mucosa.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Selenio , Animales , Ratones , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Selenito de Sodio/farmacología , Ratones Endogámicos C57BL , Citotoxinas , Infecciones por Helicobacter/metabolismo
3.
ACS Appl Mater Interfaces ; 15(41): 47939-47954, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37791782

RESUMEN

Astragalus membranaceus (Fisch.) Bge. (AM) and Angelica sinensis (Oliv.) Diels (AS) constitute a classic herb pair in prescriptions to treat myocardial fibrosis. To date, research on the AM-AS herb pair has mainly focused on the chemical compositions associated with therapeutic efficacy. However, supermolecules actually exist in herb codecoctions, and their self-assembly mechanism remains unclear. In this study, supermolecules originating from AM-AS codoping reactions (AA-NPs) were first reported. The chemical compositions of AA-NPs showed a dynamic self-assembly process. AA-NPs with different decoction times had similar surface groups and amorphous states; however, the size distributions of these nanoparticles might be different. Taking the interaction between Z-ligustilide and astragaloside IV as an example to understand the self-assembly mechanism of AA-NPs, it was found that the complex could be formed with a molar ratio of 2:1. Later, AA-NPs were proven to be effective in the treatment of myocardial fibrosis both in vivo and in vitro, the in-depth mechanisms of which were related to the recovery of cardiac function, reduced collagen deposition, and inhibition of the endothelial-to-mesenchymal transition that occurred in the process of myocardial fibrosis. Thus, AA-NPs may be the chemical material basis of the molecular mechanism of the AM-AS decoction in treating isoproterenol-induced myocardial fibrosis. Taken together, this work provides a supramolecular strategy for revealing the interaction between effective chemical components in herb-pair decoctions.


Asunto(s)
Angelica sinensis , Medicamentos Herbarios Chinos , Astragalus propinquus/química , Angelica sinensis/química , Medicamentos Herbarios Chinos/química , Fibrosis
4.
Mol Pharm ; 20(8): 3987-4006, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37503854

RESUMEN

Ototoxic drugs such as aminoglycoside antibiotics and cisplatin (CDDP) can cause sensorineural hearing loss (SNHL), which is closely related to oxidative stress and the acidification of the inner ear microenvironment. Effective treatment of SNHL often requires multifaceted approach due to the complex pathology, and drug combination therapy is expected to be at the forefront of modern hearing loss treatment. Here, space-station-like composite nanoparticles (CCC@mPP NPs) with pH/oxidation dual responsiveness and multidrug simultaneous delivery capability were constructed and then loaded with various drugs including panax notoginseng saponins (PNS), tanshinone IIA (TSIIA), and ammonia borane (AB) to provide robust protection against SNHL. Molecular dynamics simulation revealed that carboxymethyl chitosan/calcium carbonate-chitosan (CCC) NPs and monomethoxy poly(ethylene glycol)-PLGA (mPP) NPs can rendezvous and dock primarily by hydrogen bonding, and electrostatic forces may be involved. Moreover, CCC@mPP NPs crossed the round window membrane (RWM) and entered the inner ear through endocytosis and paracellular pathway. The docking state was basically maintained during this process, which created favorable conditions for multidrug delivery. This nanosystem was highly sensitive to pH and reactive oxygen species (ROS) changes, as evidenced by the restricted release of payload at alkaline condition (pH 7.4) without ROS, while significantly promoting the release in acidic condition (pH 5.0 and 6.0) with ROS. TSIIA/PNS/AB-loaded CCC@mPP NPs almost completely preserved the hair cells and remained the hearing threshold shift within normal limits in aminoglycoside- or CDDP-treated guinea pigs. Further experiments demonstrated that the protective mechanisms of TSIIA/PNS/AB-loaded CCC@mPP NPs involved direct and indirect scavenging of excessive ROS, and reduced release of pro-inflammatory cytokines. Both in vitro and in vivo experiments showed the high biocompatibility of the composite NPs, even after long-term administration. Collectively, this work suggests that composite NPs is an ideal multi-drug-delivery vehicle and open new avenues for inner ear disease therapies.


Asunto(s)
Quitosano , Pérdida Auditiva Sensorineural , Nanopartículas , Animales , Cobayas , Ácido Láctico/química , Quitosano/química , Hidrógeno , Medicina Tradicional China , Especies Reactivas de Oxígeno , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Cisplatino , Nanopartículas/química , Aminoglicósidos
5.
J Pharm Biomed Anal ; 231: 115414, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141677

RESUMEN

Radix Astragali (RA) is commonly used in Asian herbal therapy or food supply, and astragalosides and flavonoids are its major components with diverse pharmaceutical effects. To provide new information on the potential cardiovascular benefits of RA administered orally, the bioaccessibility of these compounds with relevant in vitro digestion parameters was determined for four digestion phases (oral, gastric, small and large intestines) by ultrahigh-performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, we compared the effects of digestion products on advanced glycation end products (AGEs)-induced intracellular reactive oxygen species (ROS) levels in a human arterial endothelial cells (HAECs) model, and studied the potential of RA against oxidative stress-related cardiovascular disease. The changes of saponins and flavonoids composition and antioxidant activity after digestion in intestines were mainly due to the astragaloside IV (AS-IV) biosynthesis involving saponins acetyl isomerization and deacetylation, and the flavonoid glycosides converted to aglycone by deglycosylation processes. All these results suggest that acetyl biotransformation of RA in small intestine directly influenced the response to oxidative stress, and might provide a reference for elucidation of the multi-component action after oral RA in cardiovascular health care.


Asunto(s)
Medicamentos Herbarios Chinos , Saponinas , Humanos , Cromatografía Líquida de Alta Presión/métodos , Células Endoteliales/química , Saponinas/química , Medicamentos Herbarios Chinos/química , Flavonoides/análisis , Biotransformación , Digestión
6.
Phytomedicine ; 104: 154268, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35777118

RESUMEN

BACKGROUND: The field of network pharmacology showed significant development. The concept of network pharmacology has many similarities to the philosophy of traditional Chinese medicine (TCM), making it suitable to understand the action mechanisms of TCM in treating complex diseases, such as ischemic heart diseases (IHDs). PURPOSE: This review summarizes the representative applications of network pharmacology in deciphering the mechanism underlying the treatment of IHDs with TCM. METHODS: In this report, we used "ischemic heart disease" OR "coronary heart disease" OR "coronary artery disease" OR "myocardial ischemia" AND ("network pharmacology" OR "systematic pharmacology") as keywords to search for publications from PubMed, the Web of Science, and Google Scholar databases and then analyzed the representative research reports that summarized and validated the active components and targets network of TCM in improving IHDs to show the advantages and deficiencies of network pharmacology applied in TCM research. RESULTS: The network pharmacology research indicated that HGF, PGF, MMP3, INSR, PI3K, MAPK1, SRC, VEGF, VEGFR-1, NO, eNOS, NO3, IL-6, TNF-α, and more are the main targets of TCM. Apigenin, 25S-macrostemonoside P, ginsenosides Re, Rb3, Rg3, SheXiang XinTongNing, colchicine, dried ginger-aconite decoction, Suxiao Xintong dropping pills, Ginseng-Danshen drug pair and Shenlian and more are the active ingredients, extracts, and formulations of TCM to ameliorate IHDs. These active compounds, extract, and formulations of TCM treat IHDs by delaying ventricular remodeling, reducing myocardial fibrosis, decreasing reactive oxygen species, regulating myocardial energy metabolism, ameliorating inflammation, mitigating apoptosis, and many other aspects. CONCLUSIONS: The network pharmacology supplies a novel research exemplification for understanding the treatment of IHDs with TCM. However, the application of network pharmacology in TCM studies is still at a superficial level. By rational combining artificial intelligence technology and network pharmacology, molecular biology, metabolomics, and other advanced theories and technologies, and systematically studying the metabolic process and the network among products, targets, and pathways of TCM from the clinical perspective may be a potential development trend in network pharmacology.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Isquemia Miocárdica , Panax , Inteligencia Artificial , Enfermedad Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China , Isquemia Miocárdica/tratamiento farmacológico
7.
Drug Des Devel Ther ; 16: 647-664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308255

RESUMEN

Background: Astragaloside IV is the most important bioactive component of Radix Astragali. Previous studies have shown that astragaloside IV plays an important role in the control of early- and mid-stage diabetes and late diabetic nephropathy. However, it is disappointing that the in vivo solubility of astragaloside IV and its bioavailability after oral administration are very low. We recently obtained a new water-soluble derivative of astragaloside IV-astragaloside formic acid (LS-102), which has higher bioavailability than the parent compound. In our previous study, we found that there was a significant inflammatory response in the perirenal adipose tissue of mice with obesity-related nephropathy induced by a high-fat diet (HFD), which was related to macrophage infiltration. We hypothesized that in model mice with obesity-related nephropathy, LS-102 effectively regulated the inflammatory response and pathological changes in obesity-related nephropathy through macrophages in perirenal adipose tissue. If this hypothesis is true, the effects of LS-102 and astragaloside IV on TGF-ß1/Smad signal transduction will be further investigated. Methods: In this study, adipose stem cells and an HFD-induced obesity-related nephropathy mouse model were used to observe the regulatory effect of LS-102 on perirenal fat inflammation and the mechanism. Adipose mesenchymal stem cells were extracted from mice that were fed a normal diet and those with obesity-related nephropathy. The effects of LS-102 on the proliferation of two kinds of cells were measured by the CCK-8 method. The levels of tumor necrosis factor-α (TNF-a) and plasminogen activator inhibitor-1 (PAI-1) were measured by ELISA. Obesity-related nephropathy mice were randomly divided into five groups: the HFD group, the LAS group (HFD+low concentration of astragaloside IV [10 mg/kg], intragastrically [ig]), the HAS group (HFD+high concentration of astragaloside IV [40 mg/kg], ig), the L102 group (HFD+low concentration of LS-102 [10 mg/kg], ig) and the H102 group (HFD+high concentration of LS-102 [40 mg/kg], ig). Body weight was measured, and the levels of serum glucose, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC), serum creatinine (Crea) and blood urea were measured. The kidneys were stained with HE, PAS and Masson's trichrome. Perirenal adipose tissue was harvested to examine the expression of CD68, LCA, CD11C, TNF-a, TGF-ß1, Fn1, Smad2, Smad3, Smad4, and Smad7 by immunohistochemical staining, and F4/80 was examined by immunofluorescence staining. Results: LS-102 significantly inhibited the in vitro secretion of TNF-a and PAI-1 by adipose stem cells in a concentration-dependent manner (P < 0.05). In vivo, the body weights in the LAS group, HAS group, L102 group and H102 group were significantly lower than those in the HFD group (P < 0.05). Except for that in the HFD group, the volume of perirenal adipocytes in the other groups was small and uniform (P < 0.05). Compared with the LAS, HAS, L102 and H102 groups, the HFD group had a larger glomerular cross-sectional area, proliferation of mesangial cells and the mesangial matrix, and increased matrix area/glomerular area (P < 0.05). The effect of LS-102 was better than that of astragaloside IV at the same concentration (P < 0.05). Compared with those in the HFD group, glucose, HDL-C, LDL-C and urea levels in the LAS group, HAS group, L102 group and H102 group were significantly decreased (P < 0.05). The expression of F4/80, CD68, LCA, TNF-a, CD11C, and PAI-1 in perirenal adipose tissue in the HFD group was significantly higher than that in the LAS group, HAS group, L102 group and H102 group (P < 0.05). Compared with those in the HFD group, the expression levels of TGF-ß1 and Fn1 in the HAS group, L102 group and H102 group were significantly increased (P < 0.05). Compared with the HFD group, the HAS group, L102 group and H102 group had decreased immunopositive rates of Smad2, Smad3 and Smad4 (P < 0.05). At the same concentration, the effect of LS-102 was better than that of astragaloside IV (P < 0.05). There was no significant difference in the expression of Smad7 among the different experimental groups (P > 0.05). Conclusion: Astragaloside IV and LS-102 improved the inflammatory reaction in perirenal adipose tissue and renal pathological changes in obesity-related nephropathy model mice and inhibited the TGF-ß1/Smad signaling cascade. At the same concentration, the effect of LS-102 was better than that of astragaloside IV. These results suggest that LS-102 has a better protective effect against obesity-related nephropathy. LS-102 may be a new type of traditional Chinese medicine for the clinical treatment of obesity and its related metabolic diseases.


Asunto(s)
Nefropatías Diabéticas , Saponinas , Animales , Benzoxazoles , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Triazinas , Triterpenos
8.
Sci Total Environ ; 807(Pt 3): 151072, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34736752

RESUMEN

The application of advanced biological treatment technology results in improved coking wastewater (CW) effluent quality at lower material and energy input practiced by wastewater treatment plants. In wastewater treatment, the diversity of biological processes combinations affects the variety of microorganisms and biochemical reactions resulting in effluent quality. Four full-scale CW processes, anaerobic-anoxic-oxic (A/A/O), anoxic-oxic-hydrolytic-oxic (A/O/H/O), anoxic-oxic-oxic (A/O/O), and oxic-hydrolytic-oxic (O/H/O) were compared for their consumption of chemicals and energy, emissions of greenhouse gases, and excess sludge production. A new performance indicator combining the above mentioned parameters was proposed to comprehensively evaluate processes in capacity to CW. The O/H/O process showed stable and reliable operation with minimum chemicals cost and the average energy consumption, whereas A/A/O at its good performance in TN removal required a large amount of alkaline chemicals to maintain stability. Besides, a substantial addition of chemicals in A/A/O results in larger average amounts of inorganic sludge. Also, the A/A/O process with a single aerobic unit appeared to be incapable of energy saving when dealing with CW rich in nitrogen and poor in phosphorus. The process with dual aerobic units can achieve more complete carbon and nitrogen removal, which is related to the sequence of biochemical reactions. Diverse sequence combinations can create variation in HRT and DO, whereby contaminants proceed through distinct channels of degradation. In the comparative analysis of CWPIs, it could be seen that O/H/O is the biological treatment process with the least equivalent energy consumption input at present thus exhibiting promising application in CW treatment. The A/O/O and A/O/H/O combinations are good attempts of development; however, more energy-efficient operation modes have to be further investigated.


Asunto(s)
Fenómenos Bioquímicos , Coque , Carbono , Fósforo , Aguas Residuales
9.
Sci Total Environ ; 807(Pt 1): 150684, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610395

RESUMEN

The accumulation rate, fractions, and sorption capacity of phosphorus in sediments determine the removal efficiency and service life of constructed wetlands (CWs). Nine pilot-scale three-stage surface flow CWs were constructed to treat three loading rates of lagoon-pretreated swine wastewater, and surface sediment samples at initial and one-year treatment were collected to analyze the phosphorus fractions and sorption capacity. After one-year treatment, concentration of total phosphorus (TP) in sediments increased for high loading rates of wastewater, but remained stable for low loading rates. The annual accumulation rate of TP in sediments (Ma) was -43-445 mg kg-1 yr-1 at surface loading rate (SLR) of 36-355 g P m-2 yr-1. Their association could be described well using a sigmoid model, i.e., Ma = -23 + 538/(1 + exp.(-(SLR-262)/48)) (R2adj = 0.897, RMSE = 40.8, p < 0.01), indicating that the phosphorus accumulation rates in sediments were loading rate-dependent. The sum of inorganic phosphorus fractions contributed to 80-100% of the TP concentration, and accumulation of aluminum-bound phosphorus (AlP) and iron-bound phosphorus (FeP) was responsible for variability of TP concentration in sediments. Phosphorus sorption capacity of CW1 sediments increased by 1.3-1.8 times, attributed to increased pH, and concentrations of ammonium oxalate-extractable aluminum and iron in sediments due to the wastewater input. Selecting iron and aluminum-rich materials preferentially as substrates and regulating the ratio of metal ions to phosphorus in wastewater should be alternative enhancement strategies of CWs for phosphorus removal.


Asunto(s)
Purificación del Agua , Humedales , Animales , Fósforo , Porcinos , Eliminación de Residuos Líquidos , Aguas Residuales
10.
Small ; 17(29): e2101180, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34145754

RESUMEN

Photodynamic therapy (PDT), which utilizes photosensitizer to convert molecular oxygen into singlet oxygen (1 O2 ) upon laser irradiation to ablate tumors, will exacerbate the already oxygen shortage of most solid tumors and is thus self-limiting. Herein, a sophisticated photosensitive polymeric material (An-NP) that allows sustained 1 O2 generation and sufficient oxygen supply during the entire phototherapy is engineered by alternatively applying PDT and photothermal therapy (PTT) controlled by two NIR laser beams. In addition to a photosensitizer that generates 1 O2 , An-NP consists of two other key components: a molecularly designed anthracene derivative capable of trapping/releasing 1 O2 with superior reversibility and a dye J-aggregate with superb photothermal performance. Thus, in 655 nm laser-triggered PDT process, An-NP generates abundant 1 O2 with extra 1 O2 being trapped via the conversion into EPO-NP; while in the subsequent 785 nm laser-driven PTT process, the converted EPO-NP undergoes thermolysis to liberate the captured 1 O2 and regenerates An-NP. The intratumoral oxygen level can be replenished during the PTT cycle for the next round of PDT to generate 1 O2 . The working principle and phototherapy efficacy are preliminarily demonstrated in living cells and tumor-bearing mice, respectively.


Asunto(s)
Fotoquimioterapia , Oxígeno Singlete , Animales , Línea Celular Tumoral , Ratones , Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia
11.
Molecules ; 26(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924693

RESUMEN

As a consequence of recent progression in biomedicine and nanotechnology, nanoparticle-based systems have evolved as a new method with extensive applications in responsive therapy, multimodal imaging, drug delivery and natural product separation. Meanwhile, the magnetic nanoparticulate system has aroused great interest for separation and purification because of its excellent magnetic properties. Phospholipase A2 (PLA2) is a highly expressed regulator to promote the growth of various cancers and is an ideal target to treat cancers. In this study, a novel strategy based on ligand-receptor interactions to discover novel PLA2 inhibitors was established, in which PLA2-functionalized Fe3O4@PLGA-PEG-NH2 magnetic nanoparticles were used as a supporting material combined with high-performance liquid chromatography-mass spectrometry, aiming to accelerate the discovery of novel PLA2 inhibitors from natural sources such as mangrove endophytic fungi. Under the optimized ligand fishing conditions, six target compounds were ultimately fished and identified to be cyclic peptides (1-3) and sterols (4-6), which compounds 1, 2 and 4-6 have well-documented cytotoxicities. Compound 3 exerted better inhibitory effect on A549 cells by experiment. In conclusion, PLA2-functionalized Fe3O4@PLGA-PEG-NH2 magnetic nanoparticles-based ligand fishing provided a feasible, selective and effective platform for the efficient screening and identification of antitumor components from natural products.


Asunto(s)
Enzimas Inmovilizadas/química , Extractos Vegetales/química , Células A549 , Cromatografía Líquida de Alta Presión , Humanos , Fosfolipasas A2/metabolismo , Espectrometría de Masas en Tándem
12.
ACS Nano ; 15(3): 5032-5042, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33635051

RESUMEN

The design of organic photothermal agents (PTAs) for in vivo applications face a demanding set of performance requirements, especially intense NIR-absorptivity and sufficient photobleaching resistance. J-aggregation offers a facile way to tune the optical properties of dyes, thus providing a general design platform for organic PTAs with the desired performance. Herein, we present a supramolecular strategy to build a water-stable, nonphotobleaching, and NIR-absorbing nano-PTA (J-NP) from J-aggregation of halogenated BODIPY dyes (BDP) for efficient in vivo photothermal therapy. Multiple intermolecular halogen-bonding and π-π stacking interactions triggered the formation of BDP J-aggregate, which adsorbed amphiphilic polymer chains on the surface to provide PEGylated sheetlike nano-J-aggregate (J-NS). We serendipitously discovered that the architecture of J-NS was remodeled during a long-time ultrafiltration process, generating a discrete spherical nano-J-aggregate (J-NP) with controlled size. Compared with J-NS, the remodeled J-NP significantly improved cellular uptake efficiency. J-aggregation brought J-NP striking photothermal performance, such as strong NIR-absorptivity, high photothermal conversion efficiency up to 72.0%, and favorable nonphotobleaching ability. PEGylation and shape-remodeling imparted by the polymer coating enabled J-NP to hold biocompatibility and stability in vivo, thereby exhibiting efficient antitumor photothermal activities. This work not only presents a facile J-aggregation strategy for preparing PTAs with high photothermal performance but also establishes a supramolecular platform that enables the appealing optical functions derived from J-aggregation to be applied in vivo.


Asunto(s)
Terapia Fototérmica , Polímeros , Línea Celular Tumoral , Fotoblanqueo , Fototerapia
13.
Pharmacol Res ; 167: 105513, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33617975

RESUMEN

A large number of macrophages in inflamed sites not only amplify the severity of inflammatory responses but also contribute to the deleterious progression of many chronic inflammatory diseases, autoimmune diseases and cancers. Macrophage migration is a prerequisite for their entry into inflammatory sites and their participation of macrophages in the pathologic processes. Inhibition of macrophage migration is therefore a potential anti-inflammatory mechanism. Moreover, alleviation of inflammation also prevents the macrophages infiltration. Sinomenine (SIN) is an alkaloid derived from the Chinese medicinal plant Sinomenium acutum. It has multiple pharmacological effects, including anti-inflammation, immunosuppression, and anti-arthritis. However, its anti-inflammatory molecular mechanisms and effect on macrophage migration are not fully understood. The purpose of this research was to investigate the pharmacological effects and the molecular mechanism of SIN on macrophage migration in vivo and in vitro as well as to elucidate its anti-inflammatory mechanisms associated with macrophage migration. Our results showed that SIN reduced the number of RAW264.7 cells migrating into inflammatory paws and blocked lipopolysaccharide (LPS)-induced RAW264.7 cells and bone marrow-derived macrophages (BMDMs) migration in vitro. Furthermore, SIN attenuated the 3D mesenchymal migration of BMDMs. The absence of macrophage migration after circulatory and periphery macrophages depletion led to a reduction in the severity of inflammatory response. In macrophages depleted (macrophages-/-) mice, as inflammatory severity decreased, RAW264.7 cells migration was suppressed. A non-obvious effect of SIN on the inflammatory response was found in macrophages-/- mice, while the inhibitory effect of SIN on RAW264.7 cells migration was still observed. Furthermore, the migration of RAW264.7 cells pre-treated with SIN was suppressed in normal mice. Finally, Src/focal adhesion kinase (FAK)/P130Cas axis activation, which supports macrophages mesenchymal migration, and iNOS expression, NO production, integrin αV and in integrin ß3 expressions, which promote Src/FAK/P130Cas activation, were down-regulated by SIN. However, SIN had no obvious effect on the expression of the monocyte chemoattractant protein-1 (MCP-1), which is an important chemokine for macrophage migration. These results indicated that SIN significantly inhibited macrophage mesenchymal migration by down-regulating on Src/FAK/P130Cas axis activation. There was a mutual regulatory correlation between the inflammatory response and macrophage migration, and the effects of SIN on macrophage migration were involved in its anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/farmacología , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Macrófagos/efectos de los fármacos , Morfinanos/farmacología , Animales , Antiinflamatorios/química , Proteína Sustrato Asociada a CrK/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Morfinanos/química , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Sinomenium/química , Familia-src Quinasas/metabolismo
14.
Carbohydr Polym ; 255: 117392, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436221

RESUMEN

Fructooligosaccharide was isolated from Polygonatum Cyrtonema Hua (PFOS) for the first time. Structure characterized using FT-IR, MALDI-TOF-MS, NMR, AFM, and TEM, indicated that PFOS was graminan-type fructan with a degree of polymerization ranging from 5 to 10. A murine model of lipopolysaccharide (LPS)-induced peritonitis was used to evaluate the in vivo anti-inflammatory and lung protective efficacy of PFOS. The result shown that pretreatment with PFOS (1.0 mg/mL) in peritonitis-induced mice could significantly inhibit the level of pro-inflammatory cytokines (TNF-α, IL-1ß) in serum (P < 0.001), increase mice survival rate from 12.5 % to 54 % (P < 0.05), and alleviated lung injury through ameliorating the damage of the pulmonary cellular architecture and reducing inflammatory monocyte accumulation in lung tissue. This effect of oligosaccharides could explain the traditional usage of P. cyrtonema as a tonic medicine for respiratory problems and it could be used as a potential natural ingredient with anti-inflammatory activity.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Antiinflamatorios/farmacología , Pulmón/efectos de los fármacos , Oligosacáridos/farmacología , Peritonitis/tratamiento farmacológico , Polygonatum/química , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/mortalidad , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Expresión Génica , Humanos , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lipopolisacáridos/administración & dosificación , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/patología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Peritonitis/inducido químicamente , Peritonitis/inmunología , Peritonitis/mortalidad , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
15.
Sci Rep ; 10(1): 14182, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843671

RESUMEN

Sinomenium acutum stem is a popular traditional Chinese medicine used to treat bone and joint diseases. Sinomenine is considered the only chemical marker for the quality control of S. acutum stem in mainstream pharmacopeias. However, higenamine in S. acutum stem is a novel stimulant that was banned by the World Anti-Doping Agency in 2017. Therefore, enhancing the quality and safety control of S. acutum stem to avoid potential safety risks is of utmost importance. In this study, a fast, sensitive, precise, and accurate method for the simultaneous determination of 11 alkaloids in S. acutum stem by ultrahigh-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ-MS/MS) was established. This method successfully analyzed thirty-five batches of S. acutum stem samples. The average contents of sinomenine, magnoflorine, coclaurine, acutumine, higenamine, sinoacutine, palmatine, magnocurarine, columbamine, 8-oxypalmatine, and jatrorrhizine were 24.9 mg/g, 6.35 mg/g, 435 µg/g, 435 µg/g, 288 µg/g, 44.4 µg/g, 22.5 µg/g, 21.1 µg/g, 15.8 µg/g, 9.30 µg/g, and 8.75 µg/g, respectively. Multivariate analysis, including principal component analysis (PCA), orthogonal partial least square method-discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA), were performed to characterize the importance and differences among these alkaloids in S. acutum stem samples. As a result, sinomenine, magnoflorine, coclaurine, acutumine, and higenamine are proposed as chemical markers for quality control. Higenamine and coclaurine are also recommended as chemical markers for safety control. This report provides five alkaloids that can be used as chemical markers for improving the quality and safety control of S. acutum stem. It also alerts athletes to avoid the risks associated with consuming S. acutum stem.


Asunto(s)
Alcaloides/análisis , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Tallos de la Planta/química , Sinomenium/química , Espectrometría de Masas en Tándem/métodos , Alcaloides/toxicidad , Aporfinas/análisis , Aporfinas/toxicidad , Análisis por Conglomerados , Isoquinolinas/análisis , Isoquinolinas/toxicidad , Análisis de los Mínimos Cuadrados , Morfinanos/análisis , Morfinanos/toxicidad , Extractos Vegetales/química , Análisis de Componente Principal , Solventes , Compuestos de Espiro/análisis , Compuestos de Espiro/toxicidad , Tetrahidroisoquinolinas/análisis , Tetrahidroisoquinolinas/toxicidad
16.
Pharmacol Res ; 158: 104897, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32422343

RESUMEN

Ischemia/reperfusion (I/R) injury is a pathological process caused by reperfusion. The prevention of I/R injury is of great importance as it would enhance the efficacy of myocardial infarction treatment in patients. Isovaleroylbinankadsurin A (ISBA) has been demonstrated to possess multiple bioactivities for treating diseases. However, its protective effect on myocardial I/R injury remains unknown. In this study, the cardiomyocytes hypoxia/reoxygenation (H/R) in vitro model and coronary artery ligation in vivo model were used to examine the protective effect of ISBA. Apoptosis was determined by flow cytometry and Caspase 3 activity. Protein level was determined by Western blot. The mitochondrial viability was examined with mitochondrial viability stain assay. Mitochondrial membrane potential was detected by JC-1 staining and reactive oxygen species (ROS) was stained with 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). The binding interactions between ISBA and receptors was simulated by molecular docking. Results showed that ISBA effectively protected cardiomyocytes from I/R injury in in vitro and in vivo models. It remarkably blocked the apoptosis induced by H/R injury through the mitochondrial dependent pathway. Activation of the reperfusion injury salvage kinase (RISK) pathway was demonstrated to be essential for ISBA to exert its protective effect on cardiomyocytes. Moreover, molecular docking indicated that ISBA could directly bind to glucocorticoid receptor (GR) and thus induce its activation. Furthermore, the treatment of GR inhibitor RU486 partially counteracted the protective effect of ISBA on cardiomyocytes, consistent with the results of docking.Most attractively, by activating GR dependent RISK pathway, ISBA significantly elevated the cellular anti-oxidative capacity and hence alleviated oxidative damage induced by I/R injury. In conclusion, our study proved that ISBA protected the heart from myocardial I/R injury through activating GR dependent RISK pathway and consequently inhibiting the ROS generation. It provides a valuable reference for ISBA to be developed as a candidate drug for cardiovascular diseases.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Kadsura , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular/métodos , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/agonistas , Transducción de Señal/fisiología
17.
Phytomedicine ; 67: 153155, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31901890

RESUMEN

BACKGROUND: Astragali Radix (AR) is a well-known Chinese herbal medicine. The quality of AR can be affected by many factors such as species, growth mode and production area, but there are still no chemical markers to distinguish it. PURPOSE: To explore chemical markers for improving the quality assessment of AR and discover chemical markers for identifying species, growth mode and production area of AR. METHODS: A highly sensitive, efficient and accurate method based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) for simultaneous quantitative determination of 14 major chemical components (five flavonoids and nine triterpene saponins) in 94 batches of AR from China, Republic of Korea and Germany was developed for the first time. To explore chemical markers and assess changes in the contents of 14 compounds in the 94 batches of AR samples from different regions, hierarchical clustering analysis (HCA) and principal component analysis (PCA) were performed. RESULTS: Astragaloside III was not only an important chemical marker for distinguishing two species of AR, i.e.: Astragalus mongholicus and A. membranaceus, but also a potential chemical marker for the classification of cultivated and semi-wild AR. In addition, in the batches of cultivated AR, the content of isoastragaloside II and cyclocephaloside II were greater in batches from the region of Shaanxi Province than that of other Provinces in China, but the content of calycosin-7-O-ß-D-glucoside and astragaloside IV, which are the quality control markers of AR required by the Chinese Pharmacopoeia, were higher than that of other Provinces in China. In addition, the content of calycosin-7-O-ß-D-glucoside, ononin, calycosin and astragaloside I could be used to identify samples of AR collected from China, Republic of Korea and Germany. CONCLUSION: This UHPLC-QQQ-MS/MS method could be applied to the quantitative evaluation of AR and could be an important and meaningful reference to develop chemical markers for quality control of AR.


Asunto(s)
Astragalus propinquus/química , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas en Tándem/métodos , Astragalus propinquus/crecimiento & desarrollo , China , Flavonoides/análisis , Alemania , Análisis de Componente Principal , Control de Calidad , Reproducibilidad de los Resultados , República de Corea , Saponinas/análisis , Triterpenos/análisis
18.
Phytochem Anal ; 31(3): 355-365, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31908072

RESUMEN

INTRODUCTION: The herbs Notopterygium incisum (NI) and N. franchetii (NF) are referred to as "Qianghuo" in the Chinese Pharmacopeia and are popular for treatment of certain conditions, including headaches, rheumatoid arthritis and the common cold. Recently, several adulterations of NI and NF have been found in the Chinese herbal market. OBJECTIVE: The aim of this study was to rapidly identify the unique characteristic compounds of NI and NF, to discriminate Qianghuo from its adulterations. METHODOLOGY: Twenty-four batches of NI and NF samples with different origins were collected and extracted with methanol. The extracts were analysed using ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). Principal component analysis (PCA) and orthogonal partial squared discriminant analysis (OPLS-DA) were then used to distinguish between NI and NF and to identify their potential characteristic markers. RESULTS: Fifty compounds were identified or tentatively characterised according to the retention time, m/z value and MS/MS fragment analysis. Six compounds were selected as potential markers of NI and NF by PCA and OPLS-DA. They were successfully applied to authenticate 17 kinds of Chinese patent medicines containing Qianghuo. The markers could not be detected in three of the Chinese patent medicines, indicating that they were counterfeit products. CONCLUSION: The UHPLC-QTOF-MS/MS coupled with the multivariate analysis method could discriminate NI and NF from their adulterations. Moreover, the data clearly demonstrated significant differences in the chemical compositions of NI and NF. Further research is needed to examine the relationship between therapeutic efficacy and the chemical constituents of NI and NF.


Asunto(s)
Apiaceae , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Análisis Multivariante , Análisis de Componente Principal
19.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 570-578, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31975464

RESUMEN

As one of the key points related to meat quality, skeletal muscle fibre type is determined by energy metabolism and genetic factors, but its transformation could be also greatly influenced by many factors. Thymol, the primary effective ingredients of thyme, is well known for its anti-oxidation and anti-inflammatory, while little is known about its effect on skeletal muscle oxidative metabolism and fibre type switch. Therefore, in order to investigate its effects and possibility to be applied in livestock production, 36 150-day-old fattening Pigs were fed with different diet for six-week experiment. As a result, the drip loss ratio of longissimus dorsi (LD) was significantly reduced (p < .05). Oxidative metabolism-related enzyme activity, the mRNA levels and protein expression of COX5B and PGC1α, mRNA level of myosin heavy chain I (MyHC I) and protein level of MyHC IIa were significantly upregulated (p < .05). While compared with control group, the protein expression of MyHC IIb was significantly decreased (p < .05). The result revealed that thymol could promote the oxidative metabolism in the muscle of pigs and improve the meat quality to a certain extent.


Asunto(s)
Alimentación Animal/análisis , Suplementos Dietéticos , Carne/análisis , Fibras Musculares Esqueléticas/clasificación , Timol/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/fisiología , Porcinos , Timol/administración & dosificación , Aumento de Peso/efectos de los fármacos
20.
Front Pharmacol ; 11: 568585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33442381

RESUMEN

The Yi nationality herbal formula Wosi is used in China as a folk medicine to treat arthritis and related diseases. Despite its widespread use, the active ingredients, and pharmacological mechanisms are not performed. This is the first time to identify the active compounds from Wosi with the aim at providing the potential effect of Wosi and exploring its underlying anti-inflammatory mechanism in monosodium urate crystals (MSU)-induced arthritis rats. In this study, anti-hyperuricemia effect was assessed by reducing the serum uric acid levels and increasing uric acid excretion in the urine for the hyperuricemia rat model. Wosi significantly suppressed the degree of joint swelling and improved the symptoms of inflammation induced by MSU crystals. The inhibition of IL-2, IL-1ß, IFN-γ, and IL-6 secretion and IL-10 increase in the serum were also observed. This study also focuses on the screening of the main compounds from Wosi against cyclooxygenase for anti-inflammatory properties using molecular docking. The result showed 3-O-[α-L-pyran rhamnose(1-3)-ß-D-pyran glucuronic acid]- oleanolic acid, 3-O-(ß-D-pyran glucuronic acid)-oleanolic acid-28-O-ß-D-pyran glucoside, and 3-O-[α-L-pyran rhamnose(1-3)-ß-D-pyran glucuronic acid]-oleanolic acid-28-O-ß-D-pyran glucoside with a higher binding affinity for COX-2 than COX-1 which indicated relatively higher interaction than COX-1. The preferential selectivity toward inhibiting COX-2 enzyme over COX-1 of three compounds from Wosi were evaluated using in-vitro cyclooxygenases 1 and 2 (COX-1/2) inhibition assays. Meanwhile, the down-regulated protein expression of COX-2 and VCAM-1 in synovial tissue sections from ankle joints of experiments rats were confirmed by immunohistochemistry analysis after the Wosi treatment. In conclusion, three oleanolic acid glycosides were implied as mainly efficient compounds in Yi nationality herbal formula Wosi for arthritis therapy via selectively influencing COX-2 and VCAM-1 signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA