Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558193

RESUMEN

The neuroprotective properties of ginsenosides have been found to reverse the neurological damage caused by oxidation in many neurodegenerative diseases. However, the distribution of ginsenosides in different tissues of the main root, which was regarded as the primary medicinal portion in clinical practice was different, the specific parts and specific components against neural oxidative damage were not clear. The present study aims to screen and determine the potential compounds in different parts of the main root in ginseng. Comparison of the protective effects in the main root, phloem and xylem of ginseng on hydrogen peroxide-induced cell death of SH-SY5Y neurons was investigated. UPLC-Q-Exactive-MS/MS was used to quickly and comprehensively characterize the chemical compositions of the active parts. Network pharmacology combined with a molecular docking approach was employed to virtually screen for disease-related targets and potential active compounds. By comparing the changes before and after Content-Effect weighting, the compounds with stronger anti-nerve oxidative damage activity were screened out more accurately. Finally, the activity of the selected monomer components was verified. The results suggested that the phloem of ginseng was the most effective part. There were 19 effective compounds and 14 core targets, and enriched signaling pathway and biological functions were predicted. After Content-Effect weighting, compounds Ginsenosides F1, Ginsenosides Rf, Ginsenosides Rg1 and Ginsenosides Rd were screened out as potential active compounds against neural oxidative damage. The activity verification study indicated that all four predicted ginsenosides were effective in protecting SH-SY5Y cells from oxidative injury. The four compounds can be further investigated as potential lead compounds for neurodegenerative diseases. This also provides a combined virtual and practical method for the simple and rapid screening of active ingredients in natural products.


Asunto(s)
Ginsenósidos , Neuroblastoma , Panax , Humanos , Espectrometría de Masas en Tándem/métodos , Ginsenósidos/química , Panax/química , Simulación del Acoplamiento Molecular , Floema/metabolismo , Estrés Oxidativo , Cromatografía Líquida de Alta Presión/métodos
2.
Phytother Res ; 33(10): 2726-2736, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31353678

RESUMEN

20(S)-Protopanaxadiol (PPD) is a basic aglycone of the dammarane triterpenoid saponins and exerts antidepressant-like effects on behaviour in the forced swimming test (FST) and tail suspension test (TST) and in rat olfactory bulbectomy depression models. However, the antidepressant effects of PPD have not been studied thoroughly. The objective of the present study was first to investigate the effect of PPD on depression behaviours induced by chronic social defeat stress (CSDS) in mice. The results showed that CSDS was effective in producing depression-like behaviours in mice, as indicated by decreased responses in the social interaction test, sucrose preference test, TST, and FST, and that this effect was accompanied by noticeable alterations in the levels of oxidative markers (superoxide dismutase, catalase, and lipid peroxidation) and monoamines (5-HT and NE) in the hippocampus and serum corticosterone levels. Additionally, western blot analysis revealed that CSDS exposure significantly downregulated BDNF, p-TrkB/TrkB, p-Akt/Akt, and p-mTOR/mTOR protein expression in the hippocampus. Remarkably, chronic PPD treatment significantly ameliorated these behavioral and biochemical alterations associated withCSDS-induced depression. Our results suggest that PPD exerts antidepressant-like effects in mice with CSDS-induced depression and that this effect may be mediated by the normalization of neurotransmitter and corticosterone levels and the alleviation of oxidative stress, as well as the enhancement of the PI3K/Akt/mTOR-mediated BDNF/TrkB pathway.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Sapogeninas/farmacología , Estrés Psicológico/complicaciones , Animales , Enfermedad Crónica , Corticosterona/sangre , Depresión/etiología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Ratas , Sapogeninas/uso terapéutico
3.
Molecules ; 24(11)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163647

RESUMEN

Lepidium meyenii is now widely consumed as a functional food and medicinal product, which is known as an enhancer of reproductive health. However, the specific chemical composition and mechanism of action for improving sexual function are unclear. The present study aims at screening and determining the potential compounds, which promote mouse leydig cells (TM3) proliferation. The partial least squares analysis (PLS) was employed to reveal the correlation between common peaks of high performance liquid chromatography (HPLC) fingerprint of L. meyenii and the proliferation activity of TM3. The results suggested that three compounds had good activities on the proliferation of TM3 and promoting testosterone secretion, there were N-benzyl-hexadecanamide, N-benzyl-(9z,12z)-octadecadienamide and N-benzyl-(9z,12z,15z)-octadecatrienamide which might be the potential bioactive markers related to the enhancing sexual ability functions of L. meyenii. The first step in testosterone synthesis is the transport of cholesterol into the mitochondria, and the homeostasis of mitochondrial function is related to cyclophilin D (CypD). In order to expound how bioactive ingredients lead to promoting testosterone secretion, a molecular docking simulation was used for further illustration in the active sites and binding degree of the ligands on CypD. The results indicated there was a positive correlation between the binding energy absolute value and testosterone secretion activity. In addition, in this study it also provided the reference for a simple, quick method to screen the promoting leydig cell proliferation active components in traditional Chinese medicine (TCM).


Asunto(s)
Lepidium/química , Células Intersticiales del Testículo/citología , Fitoquímicos/análisis , Fitoquímicos/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Análisis de los Mínimos Cuadrados , Células Intersticiales del Testículo/efectos de los fármacos , Ligandos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Análisis Multivariante , Fitoquímicos/química , Testosterona/metabolismo
4.
Phytomedicine ; 48: 94-103, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30195885

RESUMEN

BACKGROUND: Ginkgo biloba extract (EGb-761) has been in use to treat variety of ailments including memory loss and emotional disorders usually experienced after ischemic stroke. However, data regarding its protective role in stroke associated motor dysfunction is scarce. PURPOSE: The present work was designed to investigate the long-term effects of EGb-761 on the motor dysfunctions associated with permanent middle cerebral artery occlusion (pMCAO) in rats. STUDY DESIGN/METHODS: Focal ischemic stroke was induced in male Sprague-Dawley rats by pMCAO. These rats were orally administered with EGb-761 (25, 50, 100 mg/kg) and positive control butylphthalide (50 mg/kg) for up to 28 consecutive days. The motor function was evaluated by assessing neurological scores, rotarod performance and gait analysis after 7, 14, 21 and 28 days. After 28 days, the histological examination of in frontal cortex and hippocampus was also carried out. RESULTS: EGb-761 treatment significantly improved motor function with better outcome in coordination and gait impairment rats. EGb-761 (25, 50, 100 mg/kg) treatment for 28 days significantly decreased the neurological scores. After 28 days of treatment EGb-761 (50 and 100 mg/kg) significantly increased the latency in rotarod test, walk speed, and the body rotation, whereas, decreased the stride time and the left posterior swing length in gait were observed. EGb-761 (50, 100 mg/kg). EGb-761 (50, 100 mg/kg) significantly improved the pathological changes related to pMCAO. CONCLUSIONS: EGb 761 could improve motor function especially gait impairments among pMCAO rat model related to the decreased neuronal damage. Therefore, it might be the potential to be explored further as an effective therapeutic drug to treat post stroke motor dysfunctions.


Asunto(s)
Infarto de la Arteria Cerebral Media/fisiopatología , Locomoción/efectos de los fármacos , Extractos Vegetales/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/patología , Ginkgo biloba , Hipocampo/efectos de los fármacos , Hipocampo/patología , Infarto de la Arteria Cerebral Media/inducido químicamente , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
5.
Phytother Res ; 32(6): 1023-1029, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29468732

RESUMEN

Depression is a common, dysthymic, and psychiatric disorder, resulting in enormous social and economic burden. Dammarane sapogenins (DS), an active fraction from oriental ginseng, has shown antidepressant-like effects in chronic restraint rats and sleep interruption-induced mice, and the present study aimed to further confirm the antidepressant effects of DS in a model of chronic unpredictable mild stress (CUMS) and to explore the underlying mechanism. Oral administration of DS (20, 40, and 80 mg/kg) markedly improved depressant-like behaviors, increasing the sucrose intake in the sucrose preference test and reducing the latency in the novelty-suppressed feeding test, and decreasing the immobility time in both the tail suspension and forced swimming tests, compared with the CUMS mice. Biochemical analysis of brain tissue and serum showed that DS treatment restored the decreased hippocampal neurotransmitter concentrations of serotonin, dopamine, norepinephrine (noradrenaline), and gamma-aminobutyric acid, and decreased the elevated of serum hormone levels (corticotrophin releasing factor, adrenocorticotrophic hormone, and corticosterone) induced by CUMS. Our findings confirm that DS exerts an antidepressant-like effect in the CUMS model of depression in mice, and suggest it may be mediated by regulation of neurotransmitters and hypothalamic-pituitary-adrenal axis.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sapogeninas/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Triterpenos/uso terapéutico , Animales , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos BALB C , Sapogeninas/farmacología , Triterpenos/farmacología , Damaranos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA