Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Funct ; 14(23): 10401-10417, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955584

RESUMEN

Gut microbiota are closely related to lipopolysaccharide (LPS)-induced acute lung injury (ALI). Akkermansia muciniphila (A. muciniphila) maintains the intestinal barrier function and regulates the balance of reduced glutathione/oxidized glutathione. However, it may be useful as a treatment strategy for LPS-induced lung injury. Our study aimed to explore whether A. muciniphila could improve lung injury by affecting the gut microbiota. The administration of A. muciniphila effectively attenuated lung injury tissue damage and significantly decreased the oxidative stress and inflammatory reaction induced by LPS, with lower levels of myeloperoxidase (MDA), enhanced superoxide dismutase (SOD) activity, decreased pro-inflammatory cytokine levels, and reduced macrophage and neutrophil infiltration. Moreover, A. muciniphila maintained the intestinal barrier function, reshaped the disordered microbial community, and promoted the secretion of short-chain fatty acids (SCFAs). A. muciniphila significantly downregulated the expression of TLR2, MyD88 and NF-kappa B (P < 0.05). Butyrate supplementation demonstrated a significant improvement in the inflammatory response (P < 0.05) and mitigation of histopathological damage in mice with ALI, thereby restoring the intestinal butyric acid concentration. In conclusion, our findings indicate that A. muciniphila inhibits the accumulation of inflammatory cytokines and attenuates the activation of the TLR2/Myd88/NF-κB pathway due to exerting anti-inflammatory effects through butyrate. This study provides an experimental foundation for the potential application of A. muciniphila and butyrate in the prevention and treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Microbioma Gastrointestinal , Animales , Ratones , Lipopolisacáridos/efectos adversos , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 2/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , FN-kappa B/genética , FN-kappa B/metabolismo , Citocinas/metabolismo , Ácidos Grasos Volátiles/farmacología , Ácido Butírico/farmacología , Pulmón
2.
Front Cell Infect Microbiol ; 12: 1028267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439215

RESUMEN

Diets rich in fiber may provide health benefits and regulate the gut microbiome, which affects the immune system. However, the role of dietary fiber in Clostridioides difficile infection (CDI) is controversial. Here, we investigated the use of fermentable fibers, such as inulin or pectin, to replace the insoluble fiber cellulose to explore how dietary fiber affects C. difficile-induced colitis in mice through intestinal microecology and metabolomics. Using C. difficile VPI 10463, we generated a mouse model of antibiotic-induced CDI. We evaluated disease outcomes and the microbial community among mice fed two fermentable fibers (inulin or pectin) versus the insoluble fiber cellulose. We analyzed and compared the gut microbiota, intestinal epithelium, cytokine levels, immune responses, and metabolites between the groups. Severe histological injury and elevated cytokine levels were observed in colon tissues after infection. Different diets showed different effects, and pectin administration protected intestinal epithelial permeability. Pectin also steadily increased the diversity of the microbiome and decreased the levels of C. difficile-induced markers of inflammation in serum and colonic tissues. The pectin group showed a higher abundance of Lachnospiraceae and a lower abundance of the conditionally pathogenic Enterobacteriaceae than the cellulose group with infection. The concentration of short-chain fatty acids in the cecal contents was also higher in the pectin group than in the cellulose group. Pectin exerted its effects through the aryl hydrocarbon receptor (AhR) pathway, which was confirmed by using the AhR agonist FICZ and the inhibitor CH2223191. Our results show that pectin alters the microbiome and metabolic function and triggers a protective immune response.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Enterocolitis Seudomembranosa , Ratones , Animales , Fibras de la Dieta , Inulina , Modelos Animales de Enfermedad , Pectinas , Celulosa , Citocinas
3.
Nutrients ; 14(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36145133

RESUMEN

Clostridioides difficile infection is closely related to the intestinal flora disorders induced by antibiotics, and changes in the intestinal flora may cause the occurrence and development of Clostridioides difficile infection. Epigallocatechin-3-gallate (EGCG) is one of the major bioactive ingredients of green tea and has been suggested to alleviate the growth of C. difficile in vitro. EGCG can ameliorate several diseases, such as obesity, by regulating the gut microbiota. However, whether EGCG can attenuate C. difficile infection by improving the gut microbiota is unknown. After establishing a mouse model of C. difficile infection, mice were administered EGCG (25 or 50 mg/kg/day) or PBS intragastrically for 2 weeks to assess the benefits of EGCG. Colonic pathology, inflammation, the intestinal barrier, gut microbiota composition, metabolomics, and the transcriptome were evaluated in the different groups. Compared with those of the mice in the CDI group, EGCG improved survival rates after infection, improved inflammatory markers, and restored the damage to the intestinal barrier. Furthermore, EGCG could improve the intestinal microbial community caused by C. difficile infection, such as by reducing the relative abundance of Enterococcaceae and Enterobacteriaceae. Moreover, EGCG can increase short-chain fatty acids, improve amino acid metabolism, and downregulate pathways related to intestinal inflammation. EGCG alters the microbiota and alleviates C. difficile infection, which provides new insights into potential therapies.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Aminoácidos , Animales , Antibacterianos/uso terapéutico , Catequina/análogos & derivados , Infecciones por Clostridium/tratamiento farmacológico , Ácidos Grasos Volátiles , Homeostasis , Inflamación/tratamiento farmacológico , Ratones ,
4.
Appl Microbiol Biotechnol ; 106(9-10): 3735-3749, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35554627

RESUMEN

The depletion of Bacteroides in the gut is closely correlated with the progression of alcoholic liver disease (ALD). This study aimed to identify Bacteroides strains with protective effects against ALD and evaluate the synergistic effects of Bacteroides and pectin in this disease. Mice were fed Lieber-DeCarli alcohol diet to establish an experimental ALD model and pre-treated with 4 Bacteroides strains. The severity of the liver injury, hepatic steatosis, and inflammation was evaluated through histological and biochemical assays. We found that Bacteroides fragilis ATCC25285 had the best protective effects against ALD strains by alleviating both ethanol-induced liver injury and steatosis. B. fragilis ATCC25285 could counteract inflammatory reactions in ALD by producing short-chain fat acids (SCFAs) and enhancing the intestinal barrier. In the subsequent experiment, the synbiotic combination of B. fragilis ATCC25285 and pectin was evaluated and the underlying mechanisms were investigated by metabolomic and microbiome analyses. The combination elicited superior anti-ALD effects than the individual agents used alone. The synergistic effects of B. fragilis ATCC25285 and pectin were driven by modulating gut microbiota, improving tryptophan metabolism, and regulating intestinal immune function. Based on our findings, the combination of B. fragilis ATCC25285 and pectin can be considered a potential treatment for ALD. KEY POINTS: • B. fragilis ATCC25285 was identified as a protective Bacteroides strain against ALD. • The synbiotic combination of B. fragilis and pectin has better anti-ALD effects. • The synbiotic combination modulates gut microbiota and tryptophan metabolism.


Asunto(s)
Bacteroides , Hepatopatías Alcohólicas , Animales , Etanol/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/prevención & control , Ratones , Ratones Endogámicos C57BL , Pectinas/metabolismo , Triptófano/metabolismo
5.
Sci Rep ; 11(1): 13660, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211003

RESUMEN

Ganoderma lucidum is a medicinal mushroom used in traditional Chinese medicine with putative tranquilizing effects. However, the component of G. lucidum that promotes sleep has not been clearly identified. Here, the effect and mechanism of the acidic part of the alcohol extract of G. lucidum mycelia (GLAA) on sleep were studied in mice. Administration of 25, 50 and 100 mg/kg GLAA for 28 days promoted sleep in pentobarbital-treated mice by shortening sleep latency and prolonging sleeping time. GLAA administration increased the levels of the sleep-promoting neurotransmitter 5-hydroxytryptamine and the Tph2, Iptr3 and Gng13 transcripts in the sleep-regulating serotonergic synapse pathway in the hypothalamus during this process. Moreover, GLAA administration reduced lipopolysaccharide and raised peptidoglycan levels in serum. GLAA-enriched gut bacteria and metabolites, including Bifidobacterium, Bifidobacterium animalis, indole-3-carboxylic acid and acetylphosphate were negatively correlated with sleep latency and positively correlated with sleeping time and the hypothalamus 5-hydroxytryptamine concentration. Both the GLAA sleep promotion effect and the altered faecal metabolites correlated with sleep behaviours disappeared after gut microbiota depletion with antibiotics. Our results showed that GLAA promotes sleep through a gut microbiota-dependent and serotonin-associated pathway in mice.


Asunto(s)
Productos Biológicos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Reishi , Serotonina/metabolismo , Sueño/efectos de los fármacos , Tranquilizantes/farmacología , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Ritmo Circadiano/efectos de los fármacos , Masculino , Ratones , Reishi/química , Transducción de Señal/efectos de los fármacos , Tranquilizantes/química , Tranquilizantes/aislamiento & purificación
6.
Appl Microbiol Biotechnol ; 104(17): 7437-7455, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32666187

RESUMEN

Acute liver failure is a clinical emergency associated with high mortality. Accumulating evidence indicates that gut microbiota participates in the progression of liver injury, and preventive therapies based on altering gut microbiota are of great interest. Previous studies demonstrated that Lactobacillus salivarius LI01 attenuates hepatic injury, though efficiency in curtailed in the harsh environment in the gastrointestinal tract. In this study, a system to encapsulate LI01 in alginate-pectin (AP) microgels was investigated. Encapsulation significantly enhances probiotic viability for long-term storage and heat treatment, and in simulated gastrointestinal fluids (SGF or SIF) and bile salt solutions. Acute liver injury was induced in Sprague-Dawley (SD) rats by D-galactosamine (D-GaIN) injection following pretreatment with probiotics. Liver and gut barrier function, cytokines, liver and gut histology, bacterial translocation, and gut microbiota were assessed. Administration of encapsulated LI01 more effectively upregulates hepatic anti-inflammatory cytokine IL-10 and TLR-3, restores expressions of gut barrier biomarkers Claudin-1 and MUC2 and attenuates destruction of mucosal ultrastructure compared with unencapsulated probiotics pretreatment. Pretreatment with AP-LI01 microgels altered the microbial community, decreasing the abundance of pathogenic taxa Ruminiclostridium, Dorea and Ruminococcaceae_UCG-004 and enriching beneficial taxa Ruminococcaceae_UCG-014, Eubacterium, and Prevotella_1 that produce short-chain fatty acids. These results suggest that AP encapsulation of LI01 boosts viability and attenuates liver injury by reducing inflammation and restoring intestinal barrier function. These beneficial effects are probably due to alternation of gut flora. These findings provide new insight into encapsulation technology and prevention of liver failure. KEY POINTS: • Alginate-pectin encapsulation enhances the viability of Lactobacillus salivarius LI01 under simulated commercial conditions and simulated gastrointestinal environment. • AP-LI01 microgel attenuates hepatic and intestinal inflammation and restores gut barrier function. • AP-LI01 microgel alters gut microbial community with increased SCFAs producers and decreased pathogenic microbes. • Beneficial improvements after administration of probiotics are highly associated with alternation of gut microbial community.


Asunto(s)
Ligilactobacillus salivarius , Microgeles , Probióticos , Alginatos , Animales , Galactosamina , Hígado , Pectinas , Ratas , Ratas Sprague-Dawley
7.
Front Microbiol ; 9: 1967, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186272

RESUMEN

Butyrate exerts protective effects against non-alcoholic steatohepatitis (NASH), but the underlying mechanisms are unclear. We aimed to investigate the role of butyrate-induced gut microbiota and metabolism in NASH development. Sixty-five C57BL/6J mice were divided into four groups (n = 15-17 per group) and were fed either a methionine-choline-sufficient (MCS) diet or methionine-choline-deficient (MCD) diet with or without sodium butyrate (SoB; 0.6 g/kg body weight) supplementation for 6 weeks. Liver injury, systematic inflammation, and gut barrier function were determined. Fecal microbiome and metabolome were analyzed using 16S rRNA deep sequencing and gas chromatography-mass spectrometry (GC-MS). The results showed that butyrate alleviated the MCD diet-induced microbiome dysbiosis, as evidenced by a significantly clustered configuration separate from that of the MCD group and by the depletion of Bilophila and Rikenellaceae and enrichment of promising probiotic genera Akkermansia, Roseburia, Coprococcus, Coprobacillus, Delftia, Sutterella, and Coriobacteriaceae genera. The fecal metabolomic profile was also substantially improved by butyrate; several butyrate-responsive metabolites involved in lipid metabolism and other pathways, such as stearic acid, behenic acid, oleic acid, linoleic acid, squalene, and arachidonic acid, were identified. Correlation analysis of the interaction matrix indicated that the modified gut microbiota and fecal metabolites induced by butyrate were strongly correlated with the alleviation of hepatic injury, fibrosis progression, inflammation, and lipid metabolism and intestinal barrier dysfunction. In conclusion, our results demonstrated that butyrate exerts protective effects against NASH development, and these effects may be driven by the protective gut microbiome and metabolome induced by butyrate. This study thus provides new insights into NASH prevention.

8.
Appl Microbiol Biotechnol ; 98(12): 5619-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24639205

RESUMEN

This work investigated the effect of the intragastric administration of five lactic acid bacteria from healthy people on acute liver failure in rats. Sprague-Dawley rats were given intragastric supplements of Lactobacillus salivarius LI01, Lactobacillus salivarius LI02, Lactobacillus paracasei LI03, Lactobacillus plantarum LI04, or Pediococcus pentosaceus LI05 for 8 days. Acute liver injury was induced on the eighth day by intraperitoneal injection of 1.1 g/kg body weight D-galactosamine (D-GalN). After 24 h, samples were collected to determine the level of liver enzymes, liver function, histology of the terminal ileum and liver, serum levels of inflammatory cytokines, bacterial translocation, and composition of the gut microbiome. The results indicated that pretreatment with L. salivarius LI01 or P. pentosaceus LI05 significantly reduced elevated alanine aminotransferase and aspartate aminotransferase levels, prevented the increase in total bilirubin, reduced the histological abnormalities of both the liver and the terminal ileum, decreased bacterial translocation, increased the serum level of interleukin 10 and/or interferon-γ, and resulted in a cecal microbiome that differed from that of the liver injury control. Pretreatment with L. plantarum LI04 or L. salivarius LI02 demonstrated no significant effects during this process, and pretreatment with L. paracasei LI03 aggravated liver injury. To the best of our knowledge, the effects of the three species-L. paracasei, L. salivarius, and P. pentosaceus-on D-GalN-induced liver injury have not been previously studied. The excellent characteristics of L. salivarius LI01 and P. pentosaceus LI05 enable them to serve as potential probiotics in the prevention or treatment of acute liver failure.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Galactosamina/toxicidad , Lactobacillus/crecimiento & desarrollo , Pediococcus/crecimiento & desarrollo , Probióticos/administración & dosificación , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Bilirrubina/sangre , Citocinas/sangre , Histocitoquímica , Íleon/patología , Hígado/patología , Pruebas de Función Hepática , Ratas Sprague-Dawley , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA