Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 171890, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521280

RESUMEN

A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Anaerobiosis , Fósforo , Carbono , Propionatos , Desnitrificación , Reactores Biológicos/microbiología , Nitrógeno , Acetatos , Glucosa
2.
J Environ Manage ; 353: 120116, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280251

RESUMEN

Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Aguas del Alcantarillado , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Desnitrificación , Fósforo , Reactores Biológicos , Nitrificación , Nutrientes , Nitrógeno
3.
Bioresour Technol ; 367: 128254, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334870

RESUMEN

For solving the challenge of difficult nutrient removal, high running cost and CO2 emission at low carbon-to-nitrogen (C:N) ratio, Bi-Bio-Selector for nitrogen and phosphorus removal (BBSNP) process was developed. Under parallel operation conditions, full-scale BBSNP was less influence by low C:N ratio (3.5-2) than Anaerobic-anoxic-aerobic (AAO) and achieved better nitrogen removal performance. The mechanism of performance advantage in BBSNP was analyzed by mass balance and high throughout sequencing. It demonstrated BBSNP developed unique microbial community at C:N ratio of 2. Higher abundance of Saccharibacteria, Ferruginibacter, Ottowia, Dokdonella, Candidatus_Nitrotoga and Nitrospira in BBSNP was responsible for better chemical oxygen demand (COD) utilization efficiency, denitrification, denitrifying phosphorus removal and nitrification. Meanwhile, under low C:N ratio, BBSNP could save 10% organic carbon and 15% oxygen requirement, reduce 53% running cost and 21% CO2 emission, which had practical value in relieving energy crisis and carbon emission of wastewater treatment plants (WWTPs).


Asunto(s)
Nitrógeno , Aguas Residuales , Carbono , Desnitrificación , Eliminación de Residuos Líquidos , Dióxido de Carbono , Reactores Biológicos/microbiología , Nitrificación , Fósforo , Nutrientes , Bacterias , Aguas del Alcantarillado
4.
J Hazard Mater ; 354: 72-80, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29729601

RESUMEN

Quorum sensing (QS) signalling has been extensively studied in single species populations, activated sludge, biofilm and aerobic granular sludge. However, ecological roles of QS in anaerobic granular sludge, particularly in the content of the relationship between QS signalling and microbial community composition and function, have been rarely reported. Herein, five acyl-homoserine lactones (AHLs) molecules were added in the anaerobic granular sludge system for treating traditional Chinese medicine (TCM) wastewater respectively. The results indicated that the introduction of specific AHLs could enhance the abilities of organic matters removal and methanation in anaerobic granular sludge, and meanwhile, exogenous AHLs played an important role to regulate the concentration of EPS. Sequencing analysis indicated that microbial community structures of bacteria and methanogens changed to varying degrees by adding AHLs. This study suggested that exogenous AHLs could play a role in mediating microbial community structure, thereby enhancing the performance of anaerobic granular sludge. The regulatory mechanism of AHLs on community structure was discussed, and a speculative action model was established. Exogenous regulation by selective enhancement of AHLs-mediated QS in anaerobic granular sludge provided an innovative and attractive strategy for strengthening wastewater treatments.


Asunto(s)
Acil-Butirolactonas/farmacología , Microbiota/efectos de los fármacos , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua/farmacología , Anaerobiosis , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Residuos Industriales , Medicina Tradicional China , Metano/metabolismo , Percepción de Quorum/efectos de los fármacos , ARN Ribosómico 16S/genética
5.
Bioresour Technol ; 261: 370-378, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29680703

RESUMEN

In order to explore whether the acidogenic phase and methanogenic phase could be separated vertically into a single-stage anaerobic reactor, a controlled double circulation (CDC) anaerobic reactor was proposed for treating traditional Chinese medicine (TCM) wastewater in this study. The results showed that most of the organic pollutants and refractory were removed in the first reaction area where most of the amount of sludge existed. The organic acids were accumulated in the first reaction area, and larger specific methanogenic activity (SMA) and coenzyme F420 values were found in the second reaction area. Bacterial and archaeal community structures in the two reaction areas of the CDC reactor were analyzed by Illumina MiSeq Sequencing, which revealed that the archaeal community showed larger difference compared with the bacterial community. Differences in the performance and microbial composition of the two reaction areas confirmed that phase separation was implemented in the CDC reactor.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Anaerobiosis , Metano , Aguas del Alcantarillado , Aguas Residuales
6.
Chemosphere ; 194: 211-219, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29207353

RESUMEN

In this study, the applicability of UV absorbance at 254 nm (UV254) and volatile fatty acids (VFAs) to serve as reliable surrogates to predict acute toxicity of traditional Chinese medicine (TCM) wastewater was investigated. The medicine residues and VFAs were identified as main components of the TCM wastewater, and their individual and joint toxicity assays were operated with luminescent bacteria. The median effective concentration (EC50) values of medicine residues and VFAs were in the range of 26.46-165.55 mg/L and 11.45-20.58 g/L, respectively. The joint toxicity action modes of medicine residues, VFAs and medicine residues-VFAs were identified as additive, additive and synergistic respectively. UV254 and VFAs showed better correlations with acute toxicity according to the correlation analysis, compared with other conventional parameters. The regression model was a good fit for toxic unit (TU50) as a function of UV254 and VFAs according to the stepwise regression method (adjusted R2 = 0.836). Validation of the model to the pilot-scale samples provided satisfactory prediction results in the influent and hydrolysis acidification effluent samples tests, but for EGSB effluent and final effluent samples, the model needed further optimization. Surrogates prediction using UV254 and VFAs provided a valuable and cost-saving tool for rapid or on-line monitoring of acute toxicity of TCM wastewater.


Asunto(s)
Monitoreo del Ambiente/métodos , Ácidos Grasos Volátiles , Medicina Tradicional China , Rayos Ultravioleta , Aguas Residuales/toxicidad , Bacterias/efectos de la radiación , Ácidos Grasos Volátiles/análisis , Hidrólisis , Mediciones Luminiscentes , Proyectos Piloto
7.
Bioresour Technol ; 240: 84-93, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28188105

RESUMEN

Biodegradation of traditional Chinese medicine (TCM) wastewater was investigated in a pilot-scale anaerobic-anoxic-aerobic combined process, which was composed of an expanded granular sludge blanket (EGSB) reactor, a hydrolysis acidification (HA) reactor and a biological contact oxidation (BCO) reactor. In stable stage, the average values of COD and color in the combined process effluent were 45.7mgL-1 and 13 times, respectively. Excellent linear relations (R2>0.915) were achieved between color and UV254 at three color levels. Comprehensive community structures of the combined process were analysed by Illumina MiSeq Sequencing, which revealed that microbial community in the aerobic reactor had the greatest diversity and richness. Bacteroidetes, Firmicutes and Proteobacteria were dominant phyla in the three reactors, and Bacteroidales, Geobacter, ZB2 were the predominant functional microorganisms in the anaerobic, anoxic and aerobic reactors, respectively. Good removal efficiencies and presence of core microorganisms confirmed that the combined process was feasible for treating TCM wastewater.


Asunto(s)
Medicina Tradicional China , Eliminación de Residuos Líquidos , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA