Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 63(27): 8975-8991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35416723

RESUMEN

Nostoc sphaeroides is an edible Cyanobacterium which has high nutritional value and is widely used in dietary supplements and therapeutic products. N. sphaeroides contains protein, fatty acid, minerals and vitamins. Its polysaccharides, phycobilin, phycobiliproteins and some lipids are highly bioactive. Thus, N. sphaeroides possesses anti-oxidation, anti-inflammation and cholesterol reducing functions. This paper reviews and evaluates the literature on nutritionally and functionally important compounds of N. sphaeroides. It also reviews and evaluates the processing of technologies used to process N. sphaeroides from fresh harvest to dry particulates including pretreatment, sterilization and drying, including their impact on sensorial and nutritional values. This review shows that a suitable combination of ultrasound, radio frequency and pulse spouted microwave with traditional sterilization and drying technologies greatly improves the sensorial and nutritive quality of processed N. sphaeroides and improves their shelf life; however, further research is needed to evaluate these hybrid technologies. Once suitably processed, N. sphaeroides can be used in food, cosmetics and pharmaceutical drugs as an ingredient.


Asunto(s)
Nostoc , Suplementos Dietéticos/análisis , Colesterol , Desecación
2.
Int J Biol Macromol ; 202: 354-365, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35033525

RESUMEN

Turmeric is an herb with multiple bioactive substances and health benefits. Drying is one of the most important steps of its processing and sales. In order to obtain high-quality turmeric products, we used five different pretreatment methods to treat turmeric prior to pulse-spouted microwave vacuum drying (PSMVD), including carboxymethyl cellulose coating (CMC), pectin coating (P), ultrasound (US) and their combination (CMCUS or PUS). The effect of different pretreatments on the drying kinetics, quality attributes and microstructure of turmeric were evaluated. Results showed that the US pretreatment had the shortest drying time (60 min), while coating treatment did not significantly affect drying rate. Dried turmeric with coating pretreatment had lower rehydration ratio and water adsorption capacity compared with individual ultrasound treatment. Carboxymethyl cellulose coating protected bioactive substances better than pectin coating. Moreover, CMCUS pretreatment showed significantly lower total color change, higher curcumin content, total phenols and flavonoid content as well as antioxidant capacity in all dried samples. Microstructure observation showed that the polysaccharide coating covering the surface of turmeric might reduce the degradation of bioactive compounds. Therefore, the CMCUS pretreatment before PSMVD of turmeric was recommended due to the efficiency and quality protections.


Asunto(s)
Carboximetilcelulosa de Sodio , Curcuma , Curcuma/química , Desecación/métodos , Pectinas , Fenoles
3.
Molecules ; 26(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34641361

RESUMEN

Prunus mume blossom is an edible flower that has been used in traditional Chinese medicine for thousands of years. Flavonoids are one of the most active substances in Prunus mume blossoms. The optimal ultrasonic-assisted enzymatic extraction of flavonoids from Prunus mume blossom (FPMB), the components of FPMB, and its protective effect on injured cardiomyocytes were investigated in this study. According to our results, the optimal extraction process for FPMB is as follows: cellulase at 2.0%, ultrasonic power at 300 W, ultrasonic enzymolysis for 30 min, and an enzymolysis temperature of 40 °C. FPMB significantly promoted the survival rate of cardiomyocytes and reduced the concentration of reactive oxygen species (ROS). FPMB also improved the activities of proteases caspase-3, caspase-8, and caspase-9 in cardiomyocytes. The cardiomyocyte apoptosis rate in mice was significantly reduced by exposure to FPMB. These results suggest that the extraction rate of FPMB may be improved by an ultrasonic-assisted enzymatic method. FPMB has a protective effect on the injured cardiomyocytes.


Asunto(s)
Enzimas/metabolismo , Flavonoides/farmacología , Miocitos Cardíacos/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Prunus/química , Ultrasonido/métodos , Animales , Masculino , Ratones , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA