Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 10: e12928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35190786

RESUMEN

Long-term and widespread cotton production in Xinjiang, China, has resulted in significant soil degradation, thereby leading to continuous cropping obstacles; cotton stalk biochar (CSB) addition may be an effective countermeasure to this issue, with effects that are felt immediately by root systems in direct contact with the soil. In this study, we assess the effects of different CSB application rates on soil nutrient contents, root morphology, and root physiology in two soil types commonly used for cotton production in the region. Compared with CK (no CSB addition), a 1% CSB addition increased total nitrogen (TN), available phosphorus (AP), and organic matter (OM) by 13.3%, 7.2%, and 50% in grey desert soil, respectively , and 36.5%, 19.9%, and 176.4%, respectively, in aeolian sandy soil. A 3% CSB addition increased TN, AP, and OM by 38.8%, 23.8%, and 208.1%, respectively, in grey desert soil, and 36%, 13%, and 183.2%, respectively, in aeolian sandy soil. Compared with the aeolian sandy soil, a 1% CSB addition increased TN, OM, and AP by 95%, 94.8%, and 33.3%, respectively, in the grey desert soil , while in the same soil 3% CSB addition increased TN, OM, and AP by 108%, 21.1%, and 73.9%, respectively. In the grey desert soil, compared with CK, a 1% CSB application increased the root length (RL) (34%), specific root length (SRL) (27.9%), and root volume (RV) (32.6%) during the bud stage, increased glutamine synthetase (GS) (13.9%) and nitrate reductase (NR) activities (237%), decreased the RV (34%) and average root diameter (ARD) (36.2%) during the harvesting stage. A 3% CSB addition increased the RL (44%), SRL (20%), and RV (41.2%) during the bud stage and decreased the RV (29%) and ARD (27%) during the harvesting stage. In the aeolian sandy soil, 1% CSB increased the RL (38.3%), SRL (73.7%), and RV (17%), while a 3% caused a greater increase in the RL (55%), SRL (89%), RV (28%), soluble sugar content (128%), and underground biomass (33.8%). Compared with the grey desert soil, a 1% CSB addition increased the RL (48.6%), SRL (58%), and RV (18.6%) in the aeolian sandy soil, while a 3% further increased the RL (54.8%), SRL (84.2%), RV (21.9%), and soluble sugar content (233%). The mechanisms by which CSB addition improves the two soils differ: root morphology changed from coarse and short to fine and long in the grey desert soil, and from fine and long to longer in the aeolian sandy soil. Overall, a 3% CSB addition may be a promising and sustainable strategy for maintaining cotton productivity in aeolian sandy soil in the Xinjiang region.


Asunto(s)
Carbón Orgánico , Suelo , Biomasa , Arena , China , Nitrógeno/análisis , Fósforo/análisis
2.
PeerJ ; 9: e11047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854843

RESUMEN

BACKGROUND: Endophytic fungi influence the quality and quantity of the medicinal plant's bioactive compounds through specific fungus-host interactions. Nevertheless, due to the paucity of information, the composition of endophytic fungal communities and the mechanism by which effective ingredients regulate endophytic fungal communities in roots remains unclear. METHODS: In this study, we collected root and soil samples (depth range: 0-20, 20-40, and 40-60 cm) of three Glycyrrhiza species (Glycyrrhiza uralensis, Glycyrrhiza inflata, and Glycyrrhiza glabra). Glycyrrhizic acid and liquiritin content were determined using high-performance liquid chromatography (HPLC), and total flavonoid content was determined using ultraviolet spectrophotometry. High-throughput sequencing technology was employed to explore the composition and diversity of the endophytic fungal community in different root segments of three Glycyrrhiza species. Furthermore, soil samples were subjected to physicochemical analyses. RESULTS: We observed that the liquiritin content was not affected by the root depth (0-20 cm, 20-40 cm, and 40-60 cm). Still, it was significantly affected by the Glycyrrhiza species (Glycyrrhiza uralensis, Glycyrrhiza inflata, Glycyrrhiza glabra) (P < 0.05). In Glycyrrhiza root, a total of eight phyla and 140 genera were annotated so far, out of which Ascomycota and Basidiomycota phyla, and the Fusarium, Paraphoma, and Helminthosporium genera were found to be significantly dominant. Spearman correlation analysis revealed that liquiritin content was accountable for the differences in the diversity of the endophytic fungal community. Furthermore, distance-based redundancy analysis (db-RDA) showed that physicochemical properties of the soil (available potassium and ammonium nitrogen) and the root factors (liquiritin and water content) were the main contributing factors for the variations in the overall structure of the endophytic fungal community. Our results showed that the effective ingredients of Glycyrrhiza root and physicochemical properties of the soil regulated the endophytic fungal community composition and medicinal licorice diversity.

3.
BMC Microbiol ; 20(1): 335, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33143657

RESUMEN

BACKGROUND: Ferula sinkiangensis is an increasingly endangered medicinal plant. Arbuscular mycorrhiza fungi (AMF) are symbiotic microorganisms that live in the soil wherein they enhance nutrient uptake, stress resistance, and pathogen defense in host plants. While such AMF have the potential to contribute to the cultivation of Ferula sinkiangensis, the composition of AMF communities associated with Ferula sinkiangensis and the relationship between these fungi and other pertinent abiotic factors still remains to be clarified. RESULTS: Herein, we collected rhizosphere and surrounding soil samples at a range of depths (0-20, 20-40, and 40-60 cm) and a range of slope positions (bottom, middle, top). These samples were then subjected to analyses of soil physicochemical properties and high-throughput sequencing (Illumina MiSeq). We determined that Glomus and Diversispora species were highly enriched in all samples. We further found that AMF diversity and richness varied significantly as a function of slope position, with this variation primarily being tied to differences in relative Glomus and Diversispora abundance. In contrast, no significant relationship was observed between soil depth and overall AMF composition, although some AMF species were found to be sensitive to soil depth. Many factors significantly affected AMF community composition, including organic matter content, total nitrogen, total potassium, ammonium nitrogen, nitrate nitrogen, available potassium, total dissolvable salt levels, pH, soil water content, and slope position. We further determined that Shannon diversity index values in these communities were positively correlated with total phosphorus, nitrate-nitrogen levels, and pH values (P < 0.05), whereas total phosphorus, total dissolvable salt levels, and pH were positively correlated with Chao1 values (P < 0.05). CONCLUSION: In summary, our data revealed that Glomus and Diversispora are key AMF genera found within Ferula sinkiangensis rhizosphere soil. These fungi are closely associated with specific environmental and soil physicochemical properties, and these soil sample properties also differed significantly as a function of slope position (P < 0.05). Together, our results provide new insights regarding the relationship between AMF species and Ferula sinkiangensis, offering a theoretical basis for further studies of their development.


Asunto(s)
Ferula/microbiología , Micobioma , Micorrizas/aislamiento & purificación , Rizosfera , Biodiversidad , ADN de Hongos/genética , Glomeromycota/clasificación , Glomeromycota/genética , Glomeromycota/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Micorrizas/clasificación , Micorrizas/genética , Plantas Medicinales/microbiología , Análisis de Secuencia de ADN , Suelo/química , Microbiología del Suelo
4.
Sci Rep ; 10(1): 18442, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116202

RESUMEN

Ferula sinkiangensis (F. sinkiangensis) is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, F. sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of F. sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and changed trend of F. sinkiangensis rhizosphere bacterial community diversity and abundance on slope position and soil depth and found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in F. sinkiangensis rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in F. sinkiangensis. In addition, Soil physicochemical factors jointly explained 24.28% of variation in F. sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of F. sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


Asunto(s)
Bacterias , Ferula , Microbiota , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Ferula/crecimiento & desarrollo , Ferula/microbiología
5.
BMC Microbiol ; 20(1): 291, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32957914

RESUMEN

BACKGROUND: The dried roots and rhizomes of medicinal licorices are widely used worldwide as a traditional medicinal herb, which are mainly attributed to a variety of bioactive compounds that can be extracted from licorice root. Endophytes and plants form a symbiotic relationship, which is an important source of host secondary metabolites. RESULTS: In this study, we used high-throughput sequencing technology and high-performance liquid chromatography to explore the composition and structure of the endophytic bacterial community and the content of bioactive compounds (glycyrrhizic acid, liquiritin and total flavonoids) in different species of medicinal licorices (Glycyrrhiza uralensis, Glycyrrhiza glabra, and Glycyrrhiza inflata) and in different planting years (1-3 years). Our results showed that the contents of the bioactive compounds in the roots of medicinal licorices were not affected by the species, but were significantly affected by the main effect growing year (1-3) (P < 0.05), and with a trend of stable increase in the contents observed with each growing year. In 27 samples, a total of 1,979,531 effective sequences were obtained after quality control, and 2432 effective operational taxonomic units (OTUs) were obtained at 97% identity. The phylum Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, and the genera unified-Rhizobiaceae, Pseudomonas, Novosphingobium, and Pantoea were significantly dominant in the 27 samples. Distance-based redundancy analysis (db-RDA) showed that the content of total flavonoids explained the differences in composition and distribution of endophytic bacterial communities in roots of cultivated medicinal liquorices to the greatest extent. Total soil salt was the most important factor that significantly affected the endophytic bacterial community in soil factors, followed by ammonium nitrogen and nitrate nitrogen. Among the leaf nutrition factors, leaf water content had the most significant effect on the endophytic bacterial community, followed by total phosphorus and total potassium. CONCLUSIONS: This study not only provides information on the composition and distribution of endophytic bacteria in the roots of medicinal licorices, but also reveals the influence of abiotic factors on the community of endophytic bacteria and bioactive compounds, which provides a reference for improving the quality of licorice.


Asunto(s)
Flavonoides/biosíntesis , Glycyrrhiza uralensis/microbiología , Glycyrrhiza/microbiología , Raíces de Plantas/microbiología , Rizoma/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Amoníaco/farmacología , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Código de Barras del ADN Taxonómico , ADN Bacteriano/genética , Endófitos/fisiología , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Flavanonas/biosíntesis , Flavanonas/aislamiento & purificación , Flavonoides/clasificación , Flavonoides/aislamiento & purificación , Glucósidos/biosíntesis , Glucósidos/aislamiento & purificación , Glycyrrhiza/efectos de los fármacos , Glycyrrhiza/metabolismo , Glycyrrhiza uralensis/efectos de los fármacos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/aislamiento & purificación , Ácido Glicirrínico/metabolismo , Consorcios Microbianos/efectos de los fármacos , Consorcios Microbianos/genética , Nitratos/farmacología , Filogenia , Raíces de Plantas/metabolismo , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Rhizobiaceae/aislamiento & purificación , Rizoma/metabolismo , Estaciones del Año , Metabolismo Secundario , Suelo/química , Microbiología del Suelo , Simbiosis
6.
Sci Rep ; 9(1): 6558, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024051

RESUMEN

Ferula sinkiangesis is a valuable medicinal plant that has become endangered. Improving the soil habitat of Ferula sinkiangesis can alleviate plant damage. Fungi play an important role in the soil, but current information on the fungal community structure in the habitat of Ferula sinkiangesis and the relationship between soil fungi and abiotic factors remains unclear. In this study, we analyzed the relative abundance of fungal species in the rhizosphere of Ferula sinkiangesis. Spearman correlation analysis showed that the abiotic factor total potassium (TK) significantly explained the alpha diversity of the fungal community. At altitude, available phosphorus (AP), nitrate nitrogen (NN) and TK were significantly associated with the fungal species. In addition, a two-way ANOVA showed that soil depth had no significant effects on the alpha diversity of rhizosphere and non-rhizosphere fungi. Interestingly, linear discriminant effect size (LEfSe) analysis indicated that different biomarkers were present at varying soil depths. These findings may be related to the growth and medicinal properties of Ferula Sinkiangensis.


Asunto(s)
Ferula/fisiología , Rizosfera , Análisis de Varianza , Ecosistema , Ferula/genética , Nitrógeno/metabolismo , Fósforo/metabolismo , Microbiología del Suelo
7.
Sci Rep ; 8(1): 5345, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29593299

RESUMEN

The medicinal value of the Ferula L. has been recognized for more than a thousand years. Wild stocks of Ferula have declined dramatically because high economic value has led to overharvesting. The objective of this study was to compare the rhizosphere microbial community of four Ferula species [F. syreitschikowii K.-Pol., F. gracilis (Ledeb.) Ledeb., F. ferulaeoides (Steud.) Korov., and F. lehmannii Boiss.] in the northern part of Xinjiang, China. The 16S rRNA sequences of rhizosphere bacteria were obtained with an Illumina paired-end sequence platform. Analysis was conducted to determine the richness and diversity of the rhizosphere bacterial communities. Two-way ANOVA indicated that plant species and soil depth had no significant effect on the alpha diversity of rhizobacteria. Linear discriminant analysis effect size showed that F. lehmannii followed by F. ferulaeoides had the most biomarkers and the highest taxon level, F. syreitschikowii and F. gracilis the least, while F. syreitschikowii and F. gracilis had the least property. This trend is consistent with reports that the medicinal value of F. lehmannii and F. ferulaeoides is greater than that of F. gracilis and F. syreitschikowii. The results of this study provide information that could be used for the commercial cultivation of Ferula spp.


Asunto(s)
Bacterias , Biodiversidad , Ferula/microbiología , Microbiota , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Metagenoma , Metagenómica/métodos , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Suelo/química
8.
Food Chem ; 136(2): 309-15, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23122063

RESUMEN

Sulforaphene, a kind of isothiocyanates, derived from glucoraphenin which is the important ingredient of radish (Raphanus sativus L.) seeds, has shown significant pharmacological activities. In this paper, the separation and purification of sulforaphene from radish seeds, was achieved by high-speed countercurrent chromatography (HSCCC). A two-phase solvent system consisted of n-hexane-ethyl acetate-methanol-water (35:100:35:100, v/v/v/v) was applied. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 30°C, respectively. From about 1000 mg amount of the crude plant extract, 249.4 mg of pure sulforaphene was obtained by one-step separation on a 280 ml HSCCC column. The purified sulforaphene was at a high purity of 96.9% and the mass recovery was more than 95%. The purity of sulforaphene was determined by HPLC analysis and its chemical structure was assessed by MS, (1)H NMR, (13)C NMR and DEPT-135 NMR.


Asunto(s)
Distribución en Contracorriente/métodos , Isotiocianatos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Raphanus/química , Semillas/química
9.
Food Chem ; 136(2): 342-7, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23122068

RESUMEN

This present study described a rapid and cost-effective method for the separation and purification of natural sulforaphene from radish seeds by SP-700 macroporous resin and preparative high-performance liquid chromatography (HPLC). Sulforaphene with high purity and recovery was obtained by preparative HPLC with a C18 column and 30% methanol in ultra-pure water as the mobile phase. 12.5 kg of radish seeds, which contained 87.5 g of sulforaphene, produced 117.5 g of sulforaphene-rich extract of 65.8% sulforaphene after primary separation by SP-700 macroporous resin. 5.9 g of 96.5% sulforaphene was obtained from 9.5 g of the sulforaphene-rich extract after purification by preparative HPLC. The purified compound was assessed by analytical HPLC and characterised by ESI/MS, (1)H NMR and (13)C NMR. Standard curve was developed using the purified sulforaphene to allow quantification of sulforaphene in the extracts of radish seeds by analytical HPLC.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Isotiocianatos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Raphanus/química , Semillas/química , Cromatografía Líquida de Alta Presión/instrumentación , Porosidad , Resinas Sintéticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA