RESUMEN
Investigations into the mechanisms regulating obesity are frantic and novel translational approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity and fasting. To understand the molecular mechanisms of metabolic regulation in seasonal adaptation, we analyzed key central nervous system and peripheral signals regulating food intake and metabolism from raccoon dogs after autumnal fattening and winter fasting. Expressions of neuropeptide Y (NPY), orexin-2 receptor (OX2R), pro-opiomelanocortin (POMC) and leptin receptor (ObRb) were analyzed as examples of orexigenic and anorexigenic signals using qRT-PCR from raccoon dog hypothalamus samples. Plasma metabolic profiles were measured with 1H NMR-spectroscopy and LC-MS. Circulating hormones and cytokines were determined with canine specific antibody assays. Surprisingly, NPY and POMC were not affected by the winter fasting nor autumn fattening and the metabolic profiles showed a remarkable equilibrium, indicating conserved homeostasis. However, OX2R and ObRb expression changes suggested seasonal regulation. Circulating cytokine levels were not increased, demonstrating that the autumn fattening did not induce subacute inflammation. Thus, the raccoon dog developed seasonal regulatory mechanisms to accommodate the autumnal fattening and prolonged fasting making the species unique in coping with the extreme environmental challenges.
Asunto(s)
Adiposidad , Ayuno/metabolismo , Metaboloma , Perros Mapache/metabolismo , Estaciones del Año , Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/patología , Animales , Biomarcadores/metabolismo , Peso Corporal , Análisis Discriminante , Femenino , Hormonas/sangre , Hipotálamo/metabolismo , Inflamación/patología , Análisis de los Mínimos Cuadrados , Límite de Detección , Análisis Multivariante , Péptidos/genética , Péptidos/metabolismo , Espectroscopía de Protones por Resonancia Magnética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perros Mapache/sangre , Receptores de Péptidos/metabolismoRESUMEN
BACKGROUND: Pandemic vitamin D deficiency is associated with insulin resistance and type 2 diabetes. Vitamin D supplementation has been reported to have improved glucose homeostasis. However, its mechanism to improve insulin sensitivity remains unclear. METHODS AND RESULTS: Male C57BL/6J mice are fed with/without vitamin D control (CD) or Western (WD) diets for 15 weeks. The vitamin-D-deficient lean (CDVDD) and obese (WDVDD) mice are further subdivided into two groups. One group is re-supplemented with vitamin D for 6 weeks and hepatic insulin signaling is examined. Both CD and WD mice with vitamin D deficiency developed insulin resistance. Vitamin D supplementation in CDVDD mice significantly improved insulin sensitivity, hepatic inflammation, and antioxidative capacity. The hepatic insulin signals like pAKT, pFOXO1, and pGSK3ß are increased and the downstream Pepck, G6pase, and Pgc1α are reduced. Furthermore, the lipogenic genes Srebp1c, Acc, and Fasn are decreased, indicating that hepatic lipid accumulation is inhibited. CONCLUSION: The results demonstrate that vitamin D deficiency induces insulin resistance. Its supplementation has significant beneficial effects on pathophysiological mechanisms in type 2 diabetes but only in lean and not in the obese phenotype. The increased subacute inflammation and insulin resistance in obesity cannot be significantly alleviated by vitamin D supplementation. This needs to be taken into consideration in the design of new clinical trials.