Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Electrophysiol ; 34(8): 1613-1621, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365931

RESUMEN

INTRODUCTION: Improved sinus rhythm (SR) maintenance rates have been achieved in patients with persistent atrial fibrillation (AF) undergoing pulmonary vein isolation plus additional ablation of low voltage substrate (LVS) during SR. However, voltage mapping during SR may be hindered in persistent and long-persistent AF patients by immediate AF recurrence after electrical cardioversion. We assess correlations between LVS extent and location during SR and AF, aiming to identify regional voltage thresholds for rhythm-independent delineation/detection of LVS areas. (1) Identification of voltage dissimilarities between mapping in SR and AF. (2) Identification of regional voltage thresholds that improve cross-rhythm substrate detection. (3) Comparison of LVS between SR and native versus induced AF. METHODS: Forty-one ablation-naive persistent AF patients underwent high-definition (1 mm electrodes; >1200 left atrial (LA) mapping sites per rhythm) voltage mapping in SR and AF. Global and regional voltage thresholds in AF were identified which best match LVS < 0.5 mV and <1.0 mV in SR. Additionally, the correlation between SR-LVS with induced versus native AF-LVS was assessed. RESULTS: Substantial voltage differences (median: 0.52, interquartile range: 0.33-0.69, maximum: 1.19 mV) with a predominance of the posterior/inferior LA wall exist between the rhythms. An AF threshold of 0.34 mV for the entire left atrium provides an accuracy, sensitivity and specificity of 69%, 67%, and 69% to identify SR-LVS < 0.5 mV, respectively. Lower thresholds for the posterior wall (0.27 mV) and inferior wall (0.3 mV) result in higher spatial concordance to SR-LVS (4% and 7% increase). Concordance with SR-LVS was higher for induced AF compared to native AF (area under the curve[AUC]: 0.80 vs. 0.73). AF-LVS < 0.5 mV corresponds to SR-LVS < 0.97 mV (AUC: 0.73). CONCLUSION: Although the proposed region-specific voltage thresholds during AF improve the consistency of LVS identification as determined during SR, the concordance in LVS between SR and AF remains moderate, with larger LVS detection during AF. Voltage-based substrate ablation should preferentially be performed during SR to limit the amount of ablated atrial myocardium.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Ablación por Catéter , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos/cirugía
2.
Sci Rep ; 10(1): 9147, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499483

RESUMEN

Identification of atrial sites that perpetuate atrial fibrillation (AF), and ablation thereof terminates AF, is challenging. We hypothesized that specific electrogram (EGM) characteristics identify AF-termination sites (AFTS). Twenty-one patients in whom low-voltage-guided ablation after pulmonary vein isolation terminated clinical persistent AF were included. Patients were included if short RF-delivery for <8sec at a given atrial site was associated with acute termination of clinical persistent AF. EGM-characteristics at 21 AFTS, 105 targeted sites without termination and 105 non-targeted control sites were analyzed. Alteration of EGM-characteristics by local fibrosis was evaluated in a three-dimensional high resolution (100 µm)-computational AF model. AFTS demonstrated lower EGM-voltage, higher EGM-cycle-length-coverage, shorter AF-cycle-length and higher pattern consistency than control sites (0.49 ± 0.39 mV vs. 0.83 ± 0.76 mV, p < 0.0001; 79 ± 16% vs. 59 ± 22%, p = 0.0022; 173 ± 49 ms vs. 198 ± 34 ms, p = 0.047; 80% vs. 30%, p < 0.01). Among targeted sites, AFTS had higher EGM-cycle-length coverage, shorter local AF-cycle-length and higher pattern consistency than targeted sites without AF-termination (79 ± 16% vs. 63 ± 23%, p = 0.02; 173 ± 49 ms vs. 210 ± 44 ms, p = 0.002; 80% vs. 40%, p = 0.01). Low voltage (0.52 ± 0.3 mV) fractionated EGMs (79 ± 24 ms) with delayed components in sinus rhythm ('atrial late potentials', respectively 'ALP') were observed at 71% of AFTS. EGMs recorded from fibrotic areas in computational models demonstrated comparable EGM-characteristics both in simulated AF and sinus rhythm. AFTS may therefore be identified by locally consistent, fractionated low-voltage EGMs with high cycle-length-coverage and rapid activity in AF, with low-voltage, fractionated EGMs with delayed components/ 'atrial late potentials' (ALP) persisting in sinus rhythm.


Asunto(s)
Fibrilación Atrial/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Anciano , Estudios de Casos y Controles , Ablación por Catéter , Simulación por Computador , Femenino , Fibrosis , Humanos , Masculino , Persona de Mediana Edad , Venas Pulmonares/cirugía
3.
Europace ; 21(10): 1484-1493, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31280323

RESUMEN

AIMS: Atrial fibrosis contributes to arrhythmogenesis in atrial fibrillation and can be detected by MRI or electrophysiological mapping. The current study compares the spatial correlation between delayed enhancement (DE) areas to low-voltage areas (LVAs) and to arrhythmogenic areas with spatio-temporal dispersion (ST-Disp) or continuous activity (CA) in atrial fibrillation (AF). METHODS AND RESULTS: Sixteen patients with persistent AF (nine long-standing) underwent DE-magnetic resonance imaging (1.25 mm × 1.25 mm × 2.5 mm) prior to pulmonary vein isolation. Left atrial (LA) voltage mapping was acquired in AF and the regional activation patterns of 7680 AF wavelets were analysed. Sites with ST-Disp or CA were characterized (voltage, duration) and their spatial relationship to DE areas and LVAs <0.5 mV was assessed. Delayed enhancement areas and LVAs covered 55% and 24% (P < 0.01) of total LA surface, respectively. Delayed enhancement area was present at 61% of LVAs, whereas low voltage was present at 28% of DE areas. Most DE areas (72%) overlapped with atrial high-voltage areas (>0.5 mV). Spatio-temporal dispersion and CA more frequently co-localized with LVAs than with DE areas (78% vs. 63%, P = 0.02). Regional bipolar voltage of ST-Disp vs. CA was 0.64 ± 0.47 mV vs. 0.58 ± 0.51 mV. All 28 ST-Disp and 56 CA areas contained electrograms with prolonged duration (115 ± 14 ms) displaying low voltage (0.34 ± 0.11 mV). CONCLUSION: A small portion of DE areas and LVAs harbour the arrhythmogenic areas displaying ST-Disp or CA. Most arrhythmogenic activities co-localized with LVAs, while there was less co-localization with DE areas. There is an important mismatch between DE areas and LVAs which needs to be considered when used as target for catheter ablation.


Asunto(s)
Fibrilación Atrial/diagnóstico , Función del Atrio Izquierdo/fisiología , Atrios Cardíacos/fisiopatología , Imagen por Resonancia Cinemagnética/métodos , Meglumina/farmacología , Miocardio/patología , Compuestos Organometálicos/farmacología , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Ablación por Catéter/métodos , Medios de Contraste/farmacología , Técnicas Electrofisiológicas Cardíacas/métodos , Femenino , Fibrosis/patología , Gadolinio , Atrios Cardíacos/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA