Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35008933

RESUMEN

Type 2 diabetes mellitus (T2DM) patients are at a higher risk of developing Alzheimer's disease (AD). Mounting evidence suggests the emerging important role of circadian rhythms in many diseases. Circadian rhythm disruption is considered to contribute to both T2DM and AD. Here, we review the relationship among circadian rhythm disruption, T2DM and AD, and suggest that the occurrence and progression of T2DM and AD may in part be associated with circadian disruption. Then, we summarize the promising therapeutic strategies targeting circadian dysfunction for T2DM and AD, including pharmacological treatment such as melatonin, orexin, and circadian molecules, as well as non-pharmacological treatments like light therapy, feeding behavior, and exercise.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Ritmo Circadiano , Diabetes Mellitus Tipo 2/fisiopatología , Melatonina/uso terapéutico , Animales , Humanos
2.
Front Pharmacol ; 11: 1257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903510

RESUMEN

BACKGROUND: Erectile dysfunction (ED) occurs more frequently and causes a worse response to the first-line therapies in diabetics compared with nondiabetic men. Corpus cavernosum vascular dysfunction plays a pivotal role in the occurrence of diabetes mellitus ED (DMED). The aim of this study was to investigate the protective effects of glucagon-like peptide-1 (GLP-1) analog liraglutide on ED and explore the underlying mechanisms in vivo and in vitro. METHODS: Type 1 diabetes was induced in rats by streptozotocin, and the apomorphine test was for screening the DMED model in diabetic rats. Then they were randomly treated with subcutaneous injections of liraglutide (0.3 mg/kg/12 h) for 4 weeks. Erectile function was assessed by cavernous nerve electrostimulation. The corpus cavernosum was used for further study. In vitro, effects of liraglutide were evaluated by primary corpus cavernosum smooth muscle cells (CCSMCs) exposed to low or high glucose (HG)-containing medium with or without liraglutide and GLP-1 receptor (GLP-1R) inhibitor. Western blotting, fluorescent probe, immunohistochemistry, and relevant assay kits were performed to measure the levels of target proteins. RESULTS: Administration of liraglutide did not significantly affect plasma glucose and body weights in diabetic rats, but improved erectile function, reduced levels of NADPH oxidases and ROS production, downregulated expression of Ras homolog gene family (RhoA) and Rho-associated protein kinase (ROCK) 2 in the DMED group dramatically. The liraglutide treatment promoted autophagy further and restored expression of GLP-1R in the DMED group. Besides, cultured CCSMCs with liraglutide exhibited a lower level of oxidative stress accompanied by inhibition of the RhoA/ROCK pathway and a higher level of autophagy compared with HG treatment. These beneficial effects of liraglutide effectively reversed by GLP-1R inhibitor. CONCLUSION: Liraglutide exerts protective effects on ED associated with the regulation of smooth muscle dysfunction, oxidative stress and autophagy, independently of a glucose- lowering effect. It provides new insight into the extrapancreatic actions of liraglutide and preclinical evidence for a potential treatment for DMED.

3.
Aging (Albany NY) ; 11(2): 741-755, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30694216

RESUMEN

Telomere length and telomere shortening rate (TSR) are accepted indicators of aging in cross-sectional population studies. This study aimed to investigate the potential influence of common antidiabetic agents on telomere length and TSR in patients with type 2 diabetes mellitus (T2DM). Leukocyte telomere length was measured through terminal restriction fragment analysis, and TSR was calculated in 388 T2DM patients. Depending on whether or not they received antidiabetic medication, patients were first divided into a treatment group and a nontreatment group. Treated patients were further subdivided into an acarbose-free group (patients taking antidiabetic agents without acarbose) and an acarbose group (patients using acarbose for more than 3 months). Results showed that untreated patients had higher TSRs than patients on antidiabetic drugs. Interestingly, patients in the acarbose group had significantly higher TSRs than patients in the acarbose-free group. Compared to the nontreatment group, the acarbose group showed better glycemic control of HbA1c, but the TSR was also higher. Our results suggest that antidiabetic treatments without acarbose can slow aging. By contrast, acarbose may accelerate biological aging in patients with T2DM, independently of glycemic control.


Asunto(s)
Acarbosa/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Leucocitos/efectos de los fármacos , Acortamiento del Telómero , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Neurosci Lett ; 674: 49-53, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522838

RESUMEN

Aerobic capacity is a strong predictor of mortality. Low capacity runner (LCR) rats exhibit reduced mitochondrial function in peripheral organs. A high fat diet (HFD) can worsen metabolic phenotype in LCR rats. Little is known about metabolic changes in the brains of these rats, however. This study examined protein markers of mitochondrial function and metabolism as a function of aerobic running capacity and an acute HFD in four brain regions: the striatum, hippocampus, hypothalamus, and substantia nigra. After 3 days HFD or chow diets, we measured peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), nuclear respiratory factors 1 (Nrf-1), mitochondrial transcription factor A (TFAM), and phosphorylated (activated) AMP-activated protein kinase (p-AMPK) protein levels in the four brain regions. LCR rats exhibited lower levels of mitochondrial proteins (PGC1-α, Nrf-1, TFAM), and greater p-AMPK, in striatum, but not in the other brain regions. Mitochondrial protein levels were greater in HFD LCR striatum, while p-AMPK was lower in this group. Markers of lower mitochondrial biogenesis and increased metabolic demand were limited to the LCR striatum, which nevertheless maintained the capacity to respond to an acute HFD challenge.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Proteínas Mitocondriales/metabolismo , Carrera , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Ratas , Sustancia Negra/metabolismo
5.
Sci Rep ; 7(1): 6936, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761132

RESUMEN

Exendin-4 (EX-4), a glucagon-like peptide-1 (GLP-1) receptor agonist, has been shown to reduce food intake and to increase proopiomelanocortin (POMC) gene expression in the hypothalamus. In this study, we examined the potential neural mechanisms by which these effects occur. Male Sprague Dawley rats were implanted with a cannula in the third ventricle of the brain through which an inhibitor of phosphatidylinositol-3 kinase (PI3K) (wortmannin) was administered, and EX-4 or vehicle was administered via intraperitoneal (IP) injection. The activity of PI3K/protein kinase B (AKT) and insulin receptor substrate-1 (IRS-1) in the hypothalamic arcuate was determined. We found that EX-4 treatment significantly decreased food intake and body weight. However, there were almost no changes in food intake and body weight when wortmannin injection (into the third ventricle) occurred prior to EX-4 IP injection. EX-4 not only increased the activity of PI3K/AKT, but it also increased IRS-1 activity. These results show that EX-4 likely suppresses food intake due to its ability to enhance insulin signaling.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Exenatida/administración & dosificación , Transducción de Señal/efectos de los fármacos , Wortmanina/administración & dosificación , Animales , Peso Corporal/efectos de los fármacos , Exenatida/farmacología , Hipotálamo/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Fosfatidilinositol 3-Quinasa/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Wortmanina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA