RESUMEN
Depression is a major psychiatric disorder affecting nearly 21% of the world population and imposes a substantial health burden on society. Although significant progress has been made in depression research, the common molecular mechanism of antidepressants is still far from clearly understood. The neuroprotective effect of antidepressants has been proposed as a possible mechanism. Although Apocynum venetum (AV) L. (Apocynaceae) was previously shown to produce an antidepressant-like effect in the tail suspension test, the mechanisms underlying such antidepressant-like effect are yet to be understood. In this work, we studied the neuroprotective effect of AV leaf flavonoid extract in corticosterone-induced neurotoxicity, using PC12 cells as a suitable in vitro model of depression. Cell viability was quantitated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The release amount of lactic dehydrogenase (LDH) and intracellular Ca(2+) concentration were measured using kit, cell period change was tested by flow cytometry, and transcript abundances of brain-derived neurotrophic factor (BDNF) and microtubule-associated protein 4 (MAP4) were determined by real-time RT-PCR. The results showed that AV extract (25, 50, and 100 µg/ml) increased the A490 nm values, but decreased LDH release and Ca(2+) concentration, suppressed the apoptosis of PC12 cells and up-regulated BDNF and MAP4 transcript abundances compared with the corresponding corticosterone-treated group. These results suggest that the AV extract could generate a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, pointing to a possible action pathway by decreasing the Ca(2+) concentration and up-regulating BDNF and MAP4 genes.
Asunto(s)
Apocynum/química , Corticosterona/toxicidad , Flavonoides/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/etiología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Apocynum/anatomía & histología , Calcio/metabolismo , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Flavonoides/uso terapéutico , L-Lactato Deshidrogenasa/metabolismo , Masculino , Medicina Tradicional China , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células PC12/efectos de los fármacos , Extractos Vegetales/uso terapéutico , RatasRESUMEN
Snow lotus is commonly used as a medicinal plant and has great pharmacological value. To protect these endangered plants, in vitro propagation and cell cultures have been established in order to meet the growing market demand. The phenolic composition, antioxidant activities, total phenolic content (TPC) and total flavonoid content (TFC) from three most commonly used species, in vitro propagated lines and the cell cultures were investigated to qualify their pharmacological value. Quantitative analysis showed that the phenolics varied greatly among different species and the same species at different habitats. From this it can be inferred that the phenolics were influenced by genetic background and the environmental conditions. Significant correlations were observed between the antioxidant activity and several phenolics/TPC/TFC, suggesting that the phenolics are a major contributor of the antioxidant activity and are important for quality evaluation of snow lotus. Based on the abundance of phenolics, TPC, TFC and antioxidant activity, the order of the quality for wild species would be Saussurea involucrata > Saussurea medusa > Saussurea gossypiphora. For S. medusa, its quality judged by origin would be Shigatse > Lhasa > Nagqu. For in vitro propagated plants, the matured plants could be a reliable substitute for wild plants, and the dynamics of phenolics is critical for quality control of this monocarpic species. We provide the first report of quality comparison between the wild plants and the cell cultures. The advantages of developing cell cultures as alternatives for plants collected from the wild are discussed.
Asunto(s)
Antioxidantes/aislamiento & purificación , Saussurea/química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Cromatografía Liquida , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Espectrofotometría UltravioletaRESUMEN
Saussurea involucrata is a medicinal plant well known for its flavonoids, including apigenin, which has been shown to significantly inhibit tumorigenesis. Since naturally occurring apigenin is in very low abundance, we took a transgenic approach to increase apigenin production by engineering the flavonoid pathway. A construct was made to contain the complete cDNA sequence of the Saussurea medusa chalcone isomerase (CHI) gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Using an Agrobacterium rhizogenes-mediated transformation system, the chi overexpression cassette was incorporated into the genome of S. involucrata, and transgenic hairy root lines were established. CHI converts naringenin chalcone into naringenin that is the precursor of apigenin. We observed that transgenic hairy root lines grew faster and produced higher levels of apigenin and total flavonoids than wild-type hairy roots did. Over a culture period of 5 weeks, the best-performing line (C46) accumulated 32.1 mgL(-1) apigenin and 647.8 mgL(-1) total flavonoids, or 12 and 4 times, respectively, higher than wild-type hairy roots did. The enhanced productivity corresponded to elevated CHI activity, confirming the key role that CHI played for total flavonoids and apigenin synthesis and the efficiency of the current metabolic engineering strategy.
Asunto(s)
Apigenina/biosíntesis , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Raíces de Plantas/genética , Saussurea/genética , Apigenina/química , Biomasa , Flavonoides/biosíntesis , Flavonoides/química , Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica , Estructura Molecular , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Saussurea/metabolismo , Transformación Genética , Transgenes/genéticaRESUMEN
Axenically grown Saussurea medusa plantlets were inoculated with four Agrobacterium rhizogenes strains, and hairy root lines were established with A. rhizogenes strain R1601 in N6 medium. PCR and Southern hybridization confirmed integration of the T-DNA fragment of the Ri plasmid from A. rhizogenes into the genome of S. medusa hairy roots. In N6 medium, maximum biomass of the hairy root cultures was achieved [8 g (dry weight) per liter; growth ratio 35-fold] after 21 days of culture. The amount of jaceosidin extracted from the hairy root cultures was 46 mg/l (production ratio of 37-fold) after 27 days of culture. The maximum jaceosidin content obtained using N6 medium was higher than that obtained with Modified White, MS or B5 medium. In N6 medium, the tip segments were more efficient for hairy root growth and jaceosidin production than the middle and basal regions of the root.