Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(1): 23, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231256

RESUMEN

KEY MESSAGE: Integrated QTL mapping and WGCNA condense the potential gene regulatory network involved in oil accumulation. A glycosyl hydrolases gene (GhHSD1) for oil biosynthesis was confirmed in Arabidopsis, which will provide useful knowledge to understand the functional mechanism of oil biosynthesis in cotton. Cotton is an economical source of edible oil for the food industry. The genetic mechanism that regulates oil biosynthesis in cottonseeds is essential for the genetic enhancement of oil content (OC). To explore the functional genomics of OC, this study utilized an interspecific backcross inbred line population to dissect the quantitative trait locus (QTL) interlinked with OC. In total, nine OC QTLs were identified, four of which were novel, and each QTL explained 3.62-34.73% of the phenotypic variation of OC. The comprehensive transcript profiling of developing cottonseeds revealed 3,646 core genes differentially expressed in both inbred parents. Functional enrichment analysis determined 43 genes were annotated with oil biosynthesis processes. Implementation of weighted gene co-expression network analysis showed that 803 differential genes had a significant correlation with the OC phenotype. Further integrated analysis identified seven important genes located in OC QTLs. Of which, the GhHSD1 gene located in stable QTL qOC-Dt3-1 exhibited the highest functional linkages with the other network genes. Phylogenetic analysis showed significant evolutionary differences in the HSD1 sequences between oilseed- and starch- crops. Furthermore, the overexpression of GhHSD1 in Arabidopsis yielded almost 6.78% higher seed oil. This study not only uncovers important genetic loci for oil accumulation in cottonseed, but also provides a set of new candidate genes that potentially influence the oil biosynthesis pathway in cottonseed.


Asunto(s)
Arabidopsis , Gossypium , Gossypium/genética , Aceite de Semillas de Algodón , Filogenia , Genómica
2.
Chem Biodivers ; 20(2): e202200911, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36627123

RESUMEN

Arenobufagin, one of the bufadienolides isolated from traditional Chinese medicine Chan'su, exhibits potent antitumor activity. However, serious toxicity and small therapeutic window limits its drug development. In the present study, to our knowledge, novel 3,11-bispeptide ester arenobufagin derivatives have been firstly designed and synthesized on the base of our previous discovery of active 3-monopeptide ester derivative. The in vitro antiproliferative activity evaluation revealed that the moiety at C3 and C11 hydroxy had an important influence on cytotoxic activity and selectivity. Compound ZM350 notably inhibited tumor growth by 58.8 % at a dose 10 mg/kg in an A549 nude mice xenograft model. Therefore, compound ZM350 also presented a concentration-dependent apoptosis induction and low inhibitory effect against both hERG potassium channel and Cav1.2 calcium channel. Our study suggests that novel 3,11-bispeptide ester derivatives will be a potential benefit to further antitumor agent development of arenobufagin.


Asunto(s)
Antineoplásicos , Bufanólidos , Animales , Ratones , Humanos , Línea Celular Tumoral , Cardiotoxicidad/tratamiento farmacológico , Ratones Desnudos , Antineoplásicos/farmacología , Bufanólidos/química , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular
3.
Physiol Plant ; 174(3): e13701, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35526222

RESUMEN

Cotton is not only the most important fiber crop but also the fifth most important oilseed crop in the world because of its oil-rich seeds as a byproduct of fiber production. By comparative transcriptome analysis between two germplasms with diverse oil accumulation, we reveal pieces of the gene expression network involved in the process of oil synthesis in cottonseeds. Approximately, 197.16 Gb of raw data from 30 RNA sequencing samples with 3 biological replicates were generated. Comparison of the high-oil and low-oil transcriptomes enabled the identification of 7682 differentially expressed genes (DEGs). Based on gene expression profiles relevant to triacylglycerol (TAG) biosynthesis, we proposed that the Kennedy pathway (diacylglycerol acyltransferase-catalyzed diacylglycerol to TAG) is the main pathway for oil production, rather than the phospholipid diacylglycerol acyltransferase-mediated pathway. Using weighted gene co-expression network analysis, 5312 DEGs were obtained and classified into 14 co-expression modules, including the MEblack module containing 10 genes involved in lipid metabolism. Among the DEGs in the MEblack module, GhCYSD1 was identified as a potential key player in oil biosynthesis. The overexpression of GhCYSD1 in yeast resulted in increased oil content and altered fatty acid composition. This study may not only shed more light on the underlying molecular mechanism of oil accumulation in cottonseed oil, but also provide a set of new gene for potential enhancement of oil content in cottonseeds.


Asunto(s)
Aceite de Semillas de Algodón , Aceites de Plantas , Aceite de Semillas de Algodón/análisis , Aceite de Semillas de Algodón/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Transcriptoma/genética
4.
Plant Sci ; 286: 89-97, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31300146

RESUMEN

Cottonseed oil is one of the most important renewable resources for edible oil and biodiesel. To detect QTLs associated with cottonseed oil content (OC) and identify candidate genes that regulate oil biosynthesis, a panel of upland cotton germplasm lines was selected among those previously used to perform GWASs in China. In the present study, 13 QTLs associated with 53 common SNPs on 13 chromosomes were identified in multiple environments based on 15,369 polymorphic SNPs using the Cotton63 KSNP array. Of these, the OC QTL qOC-Dt5-1 delineated by nine SNPs occurred in a confidence interval of 4 SSRs with previously reported OC QTLs. A combined transcriptome and qRT-PCR analysis revealed that a peroxidase gene (GhPRXR1) was predominantly expressed during the middle-late stage (20-35 days post anthesis) of ovule development. The overexpression of GhPRXR1 in yeast significantly increased the OC by 20.01-37.25 %. Suppression of GhPRXR1 gene expression in the virus-induced gene-silenced cotton reduced the OC by 18.11%. Our results contribute to identifying more OC QTLs and verifying a candidate gene that influences cottonseed oil biosynthesis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium/genética , Fosfoenolpiruvato Carboxilasa/genética , Aceites de Plantas/química , Proteínas de Plantas/genética , China , Gossypium/química , Gossypium/enzimología , Gossypium/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo
5.
BMC Genomics ; 18(1): 218, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28249560

RESUMEN

BACKGROUND: Lysophosphatidic acid acyltransferase (LPAAT) encoded by a multigene family is a rate-limiting enzyme in the Kennedy pathway in higher plants. Cotton is the most important natural fiber crop and one of the most important oilseed crops. However, little is known on genes coding for LPAATs involved in oil biosynthesis with regard to its genome organization, diversity, expression, natural genetic variation, and association with fiber development and oil content in cotton. RESULTS: In this study, a comprehensive genome-wide analysis in four Gossypium species with genome sequences, i.e., tetraploid G. hirsutum- AD1 and G. barbadense- AD2 and its possible ancestral diploids G. raimondii- D5 and G. arboreum- A2, identified 13, 10, 8, and 9 LPAAT genes, respectively, that were divided into four subfamilies. RNA-seq analyses of the LPAAT genes in the widely grown G. hirsutum suggest their differential expression at the transcriptional level in developing cottonseeds and fibers. Although 10 LPAAT genes were co-localised with quantitative trait loci (QTL) for cottonseed oil or protein content within a 25-cM region, only one single strand conformation polymorphic (SSCP) marker developed from a synonymous single nucleotide polymorphism (SNP) of the At-Gh13LPAAT5 gene was significantly correlated with cottonseed oil and protein contents in one of the three field tests. Moreover, transformed yeasts using the At-Gh13LPAAT5 gene with the two sequences for the SNP led to similar results, i.e., a 25-31% increase in palmitic acid and oleic acid, and a 16-29% increase in total triacylglycerol (TAG). CONCLUSIONS: The results in this study demonstrated that the natural variation in the LPAAT genes to improving cottonseed oil content and fiber quality is limited; therefore, traditional cross breeding should not expect much progress in improving cottonseed oil content or fiber quality through a marker-assisted selection for the LPAAT genes. However, enhancing the expression of one of the LPAAT genes such as At-Gh13LPAAT5 can significantly increase the production of total TAG and other fatty acids, providing an incentive for further studies into the use of LPAAT genes to increase cottonseed oil content through biotechnology.


Asunto(s)
Aciltransferasas/genética , Genoma de Planta , Gossypium/enzimología , Aciltransferasas/clasificación , Aciltransferasas/metabolismo , Mapeo Cromosómico , Fibra de Algodón , Diploidia , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Gossypium/genética , Gossypium/crecimiento & desarrollo , Filogenia , Aceites de Plantas/análisis , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , ARN de Planta/química , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Semillas/química , Semillas/enzimología , Semillas/metabolismo , Tetraploidía , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA