Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 30(8): 1443-53, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538102

RESUMEN

Salidroside, the 8-O-ß-D-glucoside of tyrosol, is the main bioactive component of Rhodiola species and is found mainly in the plant roots. It is well known that glucosylation of tyrosol is the final step in the biosynthesis of salidroside; however, the biosynthetic pathway of tyrosol and its regulation are less well understood. A summary of the results of related studies revealed that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. In this study, a cDNA clone encoding tyrosine decarboxylase (TyrDC) was isolated from Rhodiola sachalinensis A. Bor using rapid amplification of cDNA ends. The resulting cDNA was designated RsTyrDC. RNA gel-blot analysis revealed that the predominant sites of expression in plants are the roots and high levels of transcripts are also found in callus tissue culture. Functional analysis revealed that tyrosine was best substrate of recombinant RsTyrDC. The over-expression of the sense-RsTyrDC resulted in a marked increase of tyrosol and salidroside content, but the levels of tyrosol and salidroside were 274 and 412%, respectively, lower in the antisense-RsTyrDC transformed lines than those in the controls. The data presented here provide in vitro and in vivo evidence that the RsTyrDC can regulate the tyrosol and salidroside biosynthesis, and the RsTyrDC is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. sachalinensis.


Asunto(s)
Glucósidos/biosíntesis , Rhodiola/enzimología , Tirosina Descarboxilasa/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas , Clonación Molecular , ADN sin Sentido/genética , ADN Complementario/genética , ADN de Plantas/genética , Datos de Secuencia Molecular , Fenoles , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Rhodiola/genética , Análisis de Secuencia de ADN
2.
Phytochemistry ; 72(9): 862-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21497865

RESUMEN

Salidroside, the 8-O-ß-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing production of salidroside by biotechnological manipulations. In this study, two putative UDP-glycosyltransferase (UGT) cDNAs, UGT72B14 and UGT74R1, were isolated from roots and cultured cells of methyl jasmonate (MeJA)-treated R. sachalinensis, respectively. The level of sequence identity between their deduced amino acid sequences was ca. 20%. RNA gel-blot analysis established that UGT72B14 transcripts were more abundant in roots, and UGT74R1 was highly expressed in the calli, but not in roots. Functional analysis indicated that recombinant UGT72B14 had the highest level of activity for salidroside production, and that the catalytic efficiency (Vmax/Km) of UGT72B14 was 620% higher than that of UGT74R1. The salidroside contents of the UGT72B14 and UGT74R1 transgenic hairy root lines of R. sachalinensis were also ∼420% and ∼50% higher than the controls, respectively. UGT72B14 transcripts were mainly detected in roots, and UGT72B14 had the highest level of activity for salidroside production in vitro and in vivo.


Asunto(s)
Glucósidos/biosíntesis , Glicosiltransferasas/metabolismo , Rhodiola/enzimología , Acetatos , Ciclopentanos , Glicosiltransferasas/genética , Oxilipinas , Fenoles , Filogenia , Raíces de Plantas/enzimología , Plantas Modificadas Genéticamente/enzimología , Proteínas Recombinantes/metabolismo , Rhodiola/genética
4.
Plant Cell Rep ; 26(7): 989-99, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17333022

RESUMEN

Salidroside is a novel effective adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Because this plant is a rare resource and has low yield, there is great interest in enhancing the production of salidroside. In this study, a putative UDP-glucosyltransferase (UGT) cDNA, UGT73B6, was isolated from Rhodiola sachalinensis using a rapid amplification of cDNA ends (RACE) method. The cDNA was 1,598 bp in length encoding 480 deduced amino acid residues with a conserved UDP-glucose-binding domain (PSPG box). Southern blot analysis of genomic DNA indicated that UGT73B6 existed as a single copy gene in the R. sachalinensis genome. Northern blot analysis revealed that transcripts of UGT73B6 were present in roots, calli and stems, but not in leaves. The UGT73B6 under 35S promoter with double-enhancer sequences from CaMV-Omega and TMV-Omega fragments was transferred into R. sachalinensis via Agrobacterium tumefaciens. PCR, PCR-Southern and Southern blot analyses confirmed that the UGT73B6 gene had been integrated into the genome of transgenic calli and plants. Northern blot analysis revealed that the UGT73B6 gene had been expressed at the transcriptional level. High performance liquid chromatography (HPLC) analysis indicated that the overexpression of the UGT73B6 gene resulted in an evident increase of salidroside content. These data suggest that the cloned UGT73B6 can regulate the conversion of tyrosol aglycon to salidroside in R. sachalinensis. This is the first cloned glucosyltransferase gene involved in salidroside biosynthesis.


Asunto(s)
Glucósidos/biosíntesis , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Rhodiola/genética , Rhodiola/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Glucósidos/química , Glucósidos/genética , Glucosiltransferasas/química , Datos de Secuencia Molecular , Estructura Molecular , Fenoles/química , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA