Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 345: 118827, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37598497

RESUMEN

Soil quality deterioration and heavy metal contamination have greatly limited soil productivity in mining areas. As soil is a complex system with various properties and interactions, it is imperative to conduct a comprehensive investigation to understand the amendment's mechanisms at work in the soil in mining areas as well as effective ways to address its deteriorating quality. In this study, a potassium dihydrogen phosphate-modified maize straw-cow dung biochar (PBC) was applied as a soil amendment. Various physicochemical properties of the soil including organic matter, total nitrogen, available phosphorus, and pore characteristics were analyzed. This study also assessed soil-saturated water content and soil moisture characteristic curve. Lettuce biomass was measured and changes in various speciation of Pb and Cd in the soil, and the accumulation of Pb and Cd in lettuce were examined. Results showed that the addition of PBC increased soil organic matter, total nitrogen, and available phosphorus while reducing soil bulk density, it also increased soil porosity, saturated water content, and capillary water capacity. Soil structure analysis using CT scanning revealed that 3% PBC increased the macrospores volume fraction while 5% PBC made the pores more uniform. Lettuce biomass increased by 53.3%. 5% PBC resulted in a 56.79% and 38.30% reduction in Pb and a 44.56% and 16.60% reduction in Cd in roots and shoots of lettuce respectively. PBC facilitated the transformation of Pb and Cd from unstable fractions to stable fractions through complexation and precipitation. Overall, the addition of PBC effectively improved soil nutrients, porosity, and water-holding capacity, promoted plant growth, immobilized Pb and Cd, as well as reduced the bioavailability in contaminated-soil from mining areas. This study provides an effective strategy and a new perspective for the remediation of Pb-Cd-contaminated soils.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cadmio/química , Plomo , Suelo/química , Fósforo , Contaminantes del Suelo/química , Oryza/química , Metales Pesados/análisis , Carbón Orgánico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA