Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Ethnopharmacol ; 315: 116664, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37253395

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Psoraleae (FP), the dried and ripe fruit of Cullen corylifolium (L.) Medik., is widely used due to its various clinical pharmacological effects, but its hepatotoxicity restricts its clinical application. So far, its hepatotoxic components and their underlying mechanism have not been systematically elucidated. AIM OF THE STUDY: This study was undertaken to reveal the hepatotoxicity distinction of coumarin-related compounds from glycosides to aglycones in FP and elucidate their potential mechanism. METHODS: Rats were administrated with the aqueous extract of Fructus Psoraleae (AEFP), in which eight coumarin-related compounds were focused. Subsequently, compounds exposed in rats' livers were detected by UPLC-Q-TOF-MS, and the identified hepatotoxic compounds were evaluated to elaborate their possible mechanism by the aid of high content analysis (HCA). RESULTS: Eight coumarin-related compounds were identified, among which psoralenoside (PO), isopsoralenoside (IPO), psoralen (P), and isopsoralen (IP) were the principally exposed compounds in rats' livers. Furocoumarinic acid glucoside (FAG), (E)-3-(4-(((2S, 3R, 4S, 5S, 6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) oxy) benzofuran-5-yl) acrylic acid (isofurocoumarinic acid glucoside, IFAG), furocoumarinic acid (FA), and (E)-3-(4-hydroxybenzofuran-5-yl) acrylic acid (isofurocoumarinic acid, IFA) were also detected in low abundance. P, IP, FA, and IFA were identified as the hepatotoxic compounds, while their glycosides were almost non-hepatotoxic. The HCA's results showed that hepatotoxic compounds disrupted the balance in reactive oxygen species (ROS), nuclear area, and mitochondrial membrane potential of HepG2 cells, leading to the occurrence of hepatotoxicity. CONCLUSIONS: P, IP, FA, and IFA were identified as hepatotoxic compounds, from which P and IP were proposed as the important risk components for hepatotoxicity. The conversion from glycosides to aglycones played an essential role in FP-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Psoralea , Ratas , Animales , Frutas/química , Medicamentos Herbarios Chinos/toxicidad , Glicósidos/toxicidad , Glicósidos/análisis , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Glucósidos
2.
Gels ; 8(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36547362

RESUMEN

Composite gels prepared with ovalbumin (OVA) as basic materials have been gradually utilized in food and biological fields. However, the structure and function of gels made from natural materials are not perfect, especially the hardness, viscoelasticity and water-holding capacity of gels, which are easily affected by various factors (pH, NaCl, etc.). In order to improve the antibacterial effect and safety of gels, and on the basis of exploring the bacteriostatic formula of lysozyme-oregano essential oil (LZ-OEO), the influence of microwave treatment on the stability of the composite bacteriostatic material gel was emphatically investigated and discussed so as to develop a new bacteriostatic gel material. The results revealed that the LZ-OEO antibacterial gel prepared by adding 20% OEO, with a ratio of 3:2 between OVA and LZ, was more stable after microwave treatment, and the synergistic antibacterial effect was significantly improved. That is, the OVA and LZ-OEO composite gel processed using a 350 W microwave treatment for 1 min had the highest hardness, the water-holding capacity reached 78.05% and a dense and ordered network structure was formed. In addition, the compound gel displayed excellent antibacterial effects against Staphylococcus aureus and Escherichia coli. The experimental findings in this study effectively expands the application scope of lysozyme antibacterial materials and provides a more favorable technical foundation for future development and utilization.

3.
Toxins (Basel) ; 14(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36287972

RESUMEN

Zearalenone (ZEN), also known as the F-2 toxin, is a common contaminant in cereal crops and livestock products. This experiment aimed to reveal the changes in the proteomics of ZEN-induced intestinal damage in weaned piglets by tandem mass spectrometry tags. Sixteen weaned piglets either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32 d study. The results showed that the serum levels of ZEN, α-zearalenol, and ß-zearalenol were increased in weaned piglets exposed to ZEN (p < 0.05). Zearalenone exposure reduced apparent nutrient digestibility, increased intestinal permeability, and caused intestinal damage in weaned piglets. Meanwhile, a total of 174 differential proteins (DEPs) were identified between control and ZEN groups, with 60 up-regulated DEPs and 114 down-regulated DEPs (FC > 1.20 or <0.83, p < 0.05). Gene ontology analysis revealed that DEPs were mainly involved in substance transport and metabolism, gene expression, inflammatory, and oxidative stress. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEPs were significantly enriched in 25 signaling pathways (p < 0.05), most of which were related to inflammation and amino acid metabolism. Our study provides valuable clues to elucidate the possible mechanism of ZEN-induced intestinal injury.


Asunto(s)
Zearalenona , Animales , Porcinos , Zearalenona/análisis , Proteómica , Destete , Aminoácidos
4.
Molecules ; 27(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36144657

RESUMEN

As a traditional Chinese medicine, Eucommia ulmoides Oliver (E. ulmoides Oliv.) is an important medicinal plant, and its barks, male flowers, leaves, and fruits have high value of utilization. The seed meal of E. ulmoides Oliv. is the waste residue produced after oil extraction from seeds of E. ulmoides Oliv. Though the seed meal of E. ulmoides Oliv. is an ideal feed additive, its medicinal value is far from being developed and utilized. We identified six natural iridoid compounds from the seed meal of E. ulmoides Oliv., namely geniposidic acid (GPA), scyphiphin D (SD), ulmoidoside A (UA), ulmoidoside B (UB), ulmoidoside C (UC), and ulmoidoside D (UD). Six natural iridoid compounds were validated to have anti-inflammatory activities. Hence, six compounds were quantified at the optimum extracting conditions in the seed meal of E. ulmoides Oliv. by an established ultra-performance liquid chromatography (UPLC) method. Some interesting conversion phenomena of six tested compounds were uncovered by a systematic study of stability performed under different temperatures and pH levels. GPA was certified to be stable. SD, UA, and UC were only hydrolyzed under strong alkaline solution. UB and UD were affected by high temperature, alkaline, and strong acid conditions. Our findings reveal the active compounds and explore the quantitative analysis of the tested compounds, contributing to rational utilization for the seeds residues of E. ulmoides Oliv.


Asunto(s)
Eucommiaceae , Eucommiaceae/química , Glucósidos Iridoides , Glicósidos Iridoides/análisis , Iridoides/análisis , Semillas/química
5.
Pharm Biol ; 58(1): 165-175, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32608342

RESUMEN

Context: Astragali Radix (AR) and Angelica sinensis Radix (ASR) combinations are used to treat cardiovascular disorders.Objectives: This study investigates the protective effects of different compatibility proportions of AR and ASR on cardiac dysfunction in a C57BL/6 mouse model of myocardial infarction (MI).Materials and methods: MI mice were induced by ligation of the left coronary artery and divided into six groups: sham, vehicle, 10 mg/kg/d simvastatin and combinations of AR and ASR at different ratios, including 1:1 (AR 2.5 g/kg + ASR 2.5 g/kg), 3:1 (AR 3.75 g/kg + ASR 1.25 g/kg) and 5:1 (AR 4.17 g/kg + ASR 0.83 g/kg). Both AR-ASR combinations and simvastatin were dissolved in saline solution and given daily by gavage. The left ventricle function, infarct size, heart tissue injury, apoptosis of cardiomyocytes, leukocyte infiltrates, capillary density and expression of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, Bad, IL-1ß, IL-6, VEGF, p-Akt and p-eNOS were analysed.Results: Different combinations of AR and ASR improve cardiac function and reduce infarct size (61.15% vs. 39.3%, 42.65% and 45.5%) and tissue injury through different mechanisms. When AR was combined with ASR at ratio of 1:1, the inflammation and cardiomyocyte apoptosis were suppressed (p < 0.05, p < 0.01). The combination ratio of 3:1 exerted effect in promoting angiogensis (p < 0.05). In the combination of AR and ASR at 5:1 ratio, angiogenesis was significantly improved (p < 0.01) and the apoptosis was inhibited (p < 0.05).Conclusions: Our results reflect the regulation of multiple targets and links in herb pairs and provide an important basis for the use of AR and ASR combinations in the treatment of MI.


Asunto(s)
Angelica sinensis , Planta del Astrágalo , Cardiotónicos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Raíces de Plantas , Animales , Cardiotónicos/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Extractos Vegetales/aislamiento & purificación
6.
Sci Rep ; 9(1): 16937, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729451

RESUMEN

Chemoresistance to 5-fluorouracil (5-Fu)-based chemotherapy is a leading obstacle in achieving effective treatment for colorectal cancer (CRC). Typically, NF-κB activation induced by the chemotherapeutics themselves is an important cause resulting in chemoresistance. Specifically, NF-κB activation can inhibit tumor cell apoptosis and induce chemoresistance. Drugs that can prevent NF-κB activation induced by chemotherapeutics are urgently needed to overcome chemoresistance. Obviously, aspirin is one of these agents, which has been demonstrated to possess antitumor activities and as an inhibitor of NF-κB. The current study aimed to investigate whether aspirin was able to overcome the chemoresistance to 5-Fu in CRC, together with the potential synergistic mechanisms. Our results suggested that aspirin remarkably potentiated the inhibitory effect of 5-Fu on the growth and invasion of resistant cells in vitro. In vivo, aspirin markedly enhanced the antitumor activity of 5-Fu in suppressing tumor growth and metastasis, and down-regulating the expression of NF-κB-regulated genes in the 5-Fu-resistant cells. Obviously, aspirin completely eradicated the 5-Fu-induced NF-κB activation, without inducing pronounced adverse effects. Taken together, findings in this study suggest that aspirin can reverse chemoresistance and potentiate the antitumor effect of 5-Fu, which is achieved through abolishing the 5-Fu-induced NF-κB activation, suggesting that aspirin may be a promising adjuvant therapeutic agent for CRC.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Aspirina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , FN-kappa B/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nano Lett ; 11(5): 2032-7, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21488689

RESUMEN

Graphene (G) and atomic layers of hexagonal boron nitride (h-BN) are complementary two-dimensional materials, structurally very similar but with vastly different electronic properties. Recent studies indicate that h-BN atomic layers would be excellent dielectric layers to complement graphene electronics. Graphene on h-BN has been realized via peeling of layers from bulk material to create G/h-BN stacks. Considering that both these layers can be independently grown via chemical vapor deposition (CVD) of their precursors on metal substrates, it is feasible that these can be sequentially grown on substrates to create the G/h-BN stacked layers useful for applications. Here we demonstrate the direct CVD growth of h-BN on highly oriented pyrolytic graphite and on mechanically exfoliated graphene, as well as the large area growth of G/h-BN stacks, consisting of few layers of graphene and h-BN, via a two-step CVD process. The G/h-BN film is uniform and continuous and could be transferred onto different substrates for further characterization and device fabrication.

8.
AAPS PharmSciTech ; 11(2): 878-84, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20490956

RESUMEN

Brucea javanica oil-loaded liposomes (BJOL) were prepared through thin film hydration method and characterized by transmission electron microscope, dynamic light scattering, and differential scanning calorimetry. Acute toxicity of B. javanica oil (BJO) in liposomes was assessed by determining the number of deaths of Kunming mice over intravenous treatment for 2 weeks. The pharmacokinetic behavior of the main active component (oleic acid) was studied in SD rats. The pharmacodynamics of BJOL was investigated using MMC-7721 cell lines and mice with Lewis lung cancer. The commercial emulsion of BJO (BJOE) was used as a reference. The data showed that BJOL had an average diameter of 108.2 nm with a zeta potential of -57.0 mV, drug loading of 3.60%, and entrapment efficiency of 92.40%. The area under curve of BJO in liposomes and emulsions were 2.31 and 1.15 mg min/ml, respectively. Compared with BJOE, mean residence time and elimination half-time (t(1/2)) increased 2.8- and 4.0-fold, respectively, and the clearance (CL) decreased 0.5-fold. In the acute toxicity test, the median lethal dose (LD(50)) of BJOE was 7.35 g/kg. In contrast, all mice treated with liposomes survived even at the highest dosage (12.70 g/kg). The IC(50) value of BJOL group was one third of that of BJOE group (p < 0.01), and a less weight loss was observed in the BJOL-treated animals (p < 0.05). In conclusion, the present study suggests that BJOL significantly decreased toxicity of BJO and enhance the antitumor activity. Therefore, liposomes may be a potential effective delivery vehicle for this lipophilic antitumor drug.


Asunto(s)
Brucea/química , Carcinoma Hepatocelular/tratamiento farmacológico , Liposomas/química , Neoplasias Hepáticas/tratamiento farmacológico , Vehículos Farmacéuticos/química , Aceites de Plantas/toxicidad , Aceites de Plantas/uso terapéutico , Animales , Carcinoma Hepatocelular/metabolismo , Femenino , Dosificación Letal Mediana , Masculino , Ratones , Aceites de Plantas/química , Ratas , Tasa de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA