Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phytomedicine ; 124: 155309, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237261

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative condition characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Neuroinflammation plays a pivotal role in the pathogenesis of PD, involving the activation of microglia cells, heightened production of proinflammatory cytokines, and perturbations in the composition of the gut microbiota. Rubusoside (Ru), the principal steviol bisglucoside present in Rubus chingii var. suavissimus (S.K.Lee) L.T.Lu (Rosaceae), has been documented for its anti-inflammatory properties in diverse disease models. Nonetheless, there is an imperative need to comprehensively assess and elucidate the protective and anti-inflammatory attributes of Ru concerning PD, as well as to uncover the underlying mechanism involved. OBJECTIVE: The aim of this study is to evaluate the neuroprotective and anti-inflammatory effects of Ru on PD and investigate its potential mechanisms associated with microbes. RESEARCH DESIGN AND METHODS: We pre-treated mice and cell lines with Ru in order to simulate the progression of PD and the neuroinflammatory state. The mouse model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), SN4741 cells were induced by 1-methyl-4-phenylpyridine (mpp+), and BV-2 cells were induced by lipopolysaccharide (LPS). We assessed the impact of Ru on motor function, neuroinflammation, neuron apoptosis, the composition of gut microbes, and their metabolites. RESULTS: Ru treatment reduces the release of pro-inflammatory mediators by inhibiting microglia activation. It also prevents neuronal apoptosis, thereby safeguarding dopaminergic neurons and ameliorating motor dysfunction. Furthermore, it induces alterations in the fecal microbiota composition and metabolites profile in PD mice. In vitro experiments have demonstrated that Ru inhibits neuronal apoptosis in SN4741 cells induced by mpp+, suppresses the production of pro-inflammatory mediators, and activates the c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (p38 MAPK), and nuclear factor kappa-B (NF-κB) signaling pathways. CONCLUSION: Ru exhibits inhibitory effects on the MPTP-induced PD model by mitigating neuroinflammation and neuronal apoptosis while also inducing changes in the gut microbiota and metabolite composition.


Asunto(s)
Diterpenos de Tipo Kaurano , Microbioma Gastrointestinal , Glucósidos , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Enfermedades Neuroinflamatorias , Antiinflamatorios/uso terapéutico , 1-Metil-4-fenilpiridinio , Apoptosis , Mediadores de Inflamación/metabolismo , Neuronas Dopaminérgicas , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Microglía , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Cell Syst ; 14(10): 872-882.e3, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37820730

RESUMEN

Although biochemical regulation has been extensively studied in organoid modeling protocols, the role of mechanoregulation in directing stem cell fate and organoid development has been relatively unexplored. To accurately replicate the dynamic organoid development observed in nature, in this study, we present a method of heterogeneous embedding using an alginate-shell-Matrigel-core system. This approach allows for cell-Matrigel remodeling by the inner layer and provides short-term moderate-normal compression through the soft alginate outer layer. Our results show that the time-limited confinement contributes to increased expression of neuronal markers such as neurofilament (NF) and microtubule-associated protein 2 (MAP2). Compared with non-alginate embedding and alginate compression groups, volume growth remains unimpeded. Our findings demonstrate the temporary mechanical regulation of cerebral organoid growth, which exhibits a regular growth profile with enhanced maturation. These results highlight the importance and potential practical applications of mechanoregulation in the establishment of brain organoids. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Alginatos , Organoides , Organoides/metabolismo , Diferenciación Celular , Alginatos/metabolismo
3.
Mucosal Immunol ; 16(5): 740-752, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353006

RESUMEN

Mucosa-associated invariant T (MAIT) cells are the largest population of unconventional T cells in humans. These antimicrobial T cells are poised with rapid effector responses following recognition of the cognate riboflavin (vitamin B2)-like metabolite antigens derived from microbial riboflavin biosynthetic pathway. Presentation of this unique class of small molecule metabolite antigens is mediated by the highly evolutionarily conserved major histocompatibility complex class I-related protein. In humans, MAIT cells are widely found along the upper and lower gastrointestinal tracts owing to their high expression of chemokine receptors and homing molecules directing them to these tissue sites. In this review, we discuss recent findings regarding the roles MAIT cells play in various gastrointestinal bacterial infections, and how their roles appear to differ depending on the etiological agents and the anatomical location. We further discuss the potential mechanisms by which MAIT cells contribute to pathogen control, orchestrate adaptive immunity, as well as their potential contribution to inflammation and tissue damage during gastrointestinal bacterial infections, and the ensuing tissue repair following resolution. Finally, we propose and discuss the use of the emerging three-dimensional organoid technology to test different hypotheses regarding the role of MAIT cells in gastrointestinal bacterial infections, inflammation, and immunity.


Asunto(s)
Infecciones Bacterianas , Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos de Histocompatibilidad Clase I/metabolismo , Bacterias , Riboflavina , Tracto Gastrointestinal , Inflamación , Antígenos de Histocompatibilidad Menor/metabolismo
4.
Crit Rev Immunol ; 41(5): 69-82, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36047323

RESUMEN

Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin-related metabolites presented by the evolutionarily conserved MHC class I-related (MR1) molecule. MAIT cells are abundant in circulation and mucosal tissues and are poised to mount rapid effector responses against diverse microbial organisms. Despite the absence of virally encoded riboflavin-related metabolite antigens, MAIT cells can respond to viral infections in an MR1-independent and cytokine-dependent manner. In chronic HIV-1 infection, MAIT cells are persistently depleted and functionally exhausted. Long-term effective combination antiretroviral therapy can only partially rescue MAIT cell numbers and dysfunction. Our understanding of the mechanisms underlying MAIT cell loss in HIV-1 infection is still incomplete, and to date, few effective strategies to recover their loss in humans are available. Here, we review current knowledge concerning the mechanisms of MAIT cell responses and loss in different stages of HIV-1 infection and how we may potentially develop strategies to restore these cells in the clinical setting. We further discuss novel strategies that may aid future investigations into MAIT cell immunobiology in HIV-1 infection, including the potential use of three-dimensional organoid models to dissect the mechanisms of MAIT cell depletion and to explore interventions that may restore their numbers and functionality.

5.
ACS Appl Mater Interfaces ; 12(37): 41038-41046, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32830945

RESUMEN

Photodynamic therapy (PDT) has emerged as a promising and spatiotemporally controllable cancer treatment modality. However, serious skin photosensitization during the PDT process limits the clinical application of PDT. Thus, the construction of "smart" and multifunctional photosensitizers has attracted substantial interest. Herein, we develop a mitochondria-targeting and pH-switched hybrid supramolecular photosensitizer by the host-guest interaction. The PDT efficacy of supramolecular photosensitizers can be quenched by the Förster resonance energy transfer (FRET) effect during long circulation and activated by the dissociation of supramolecular photosensitizers in an acidic tumor microenvironment, benefitting from the dynamic feature of the host-guest interaction and pH responsiveness of the water-soluble pillar[5]arene on gold nanoparticles. The rational integration of mitochondria-targeting and reductive glutathione (GSH) elimination in the hybrid switchable supramolecular photosensitizer prolongs the lifetime of reactive oxygen species generated in the PDT near mitochondria and further amplifies the PDT efficacy. Thus, the facile and versatile construction of switchable supramolecular photosensitizer offers not only the targeted and precise phototherapy but also high therapeutic efficacy, which would provide a new path for the clinic application of PDT.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Calixarenos/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Animales , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Calixarenos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Transferencia Resonante de Energía de Fluorescencia , Concentración de Iones de Hidrógeno , Sustancias Macromoleculares/química , Sustancias Macromoleculares/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Propiedades de Superficie
6.
Small ; 16(22): e2001371, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32338439

RESUMEN

Quantum dots (QDs) have numerous potential applications in lighting, engineering, and biomedicine. QDs are mainly excreted through the kidney due to their ultrasmall sizes; thus, the kidneys are target organs of QD toxicity. Here, an organoid screening platform is established and used to study the nephrotoxicity of QDs. Organoids are templated from monodisperse microfluidic Matrigel droplets and found to be homogeneous in both tissue structure and functional recapitulation within a population and suitable for the quantitative screening of toxic doses. Kidney organoids are proved displaying higher sensitivity than 2D-cultured cell lines. Similar to metal-containing QDs, black phosphorus (BP)-QDs are found to have moderate toxicity in the kidney organoids. The nephrotoxicity of BP-QDs are validated in both mice and human renal tubular epithelial cells. BP-QDs are also found to cause insulin insensitivity and endoplasmic reticulum (ER) stress in the kidney. Furthermore, ER stress-related IRE1α signaling is shown to mediate renal toxicity and insulin insensitivity caused by BP-QDs. In summary, this work demonstrates the use of constructed kidney organoids as 3D high-throughput screening tools to assess nanosafety and further illuminates the effects and molecular mechanisms of BP-QD nephrotoxicity. The findings will hopefully enable improvement of the safety of BP-QD applications.


Asunto(s)
Puntos Cuánticos , Animales , Endorribonucleasas , Humanos , Ratones , Organoides , Fósforo , Proteínas Serina-Treonina Quinasas , Puntos Cuánticos/toxicidad
7.
Ecotoxicol Environ Saf ; 169: 128-133, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30445243

RESUMEN

Selenite (Se4+) has been found to counteract the neurotoxicity of methylmercury (MeHg) in MeHg-poisoned rats. However, Se4+ has narrow range between its toxic and beneficial effects. Nanoelemental selenium (SeNPs) was found to be less toxic than other forms of Se such as Se4+. In this study, the effects of SeNPs on the load of mercury (Hg) in rats were investigated. Hyphenated technique based on size-exclusion chromatography coupled with UV and inductively coupled plasma mass spectrometry (SEC-ICP-MS) detection and synchrotron radiation X-ray fluorescence spectroscopy (SR-XRF) were used to analyze the Hg-Se-containing proteins in the serum from MeHg-poisoned rats. The Hg-Se-containing fractions monitored by UV and ICP-MS were further characterized by MALDI-TOF-MS. Elevated serum Hg and Se levels were found in MeHg-poisoned rats after SeNPs treatment. Three main Hg-containing bands with molecular weights (MWs) of 25, 62 and 140 kDa were detected in the control samples. Treatment with SeNPs increased the Hg content in proteins at 62 and 170 kDa and decreased the Hg content at 25 kDa. The fraction with 25 kDa was assigned to metallothioneins (MTs), and fractions with 40 and 75 kDa were assigned to albumin. This study showed that the low-toxicity SeNPs could reduce the Hg load in the tissues and promote the formation of high molecular weight Hg- and Se-containing proteins in MeHg-poisoned rats.


Asunto(s)
Intoxicación del Sistema Nervioso por Mercurio/prevención & control , Mercurio/sangre , Metaloproteínas/sangre , Compuestos de Metilmercurio/toxicidad , Nanopartículas , Proteínas de Unión al Selenio/sangre , Selenio/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Masculino , Espectrometría de Masas , Intoxicación del Sistema Nervioso por Mercurio/sangre , Unión Proteica , Ratas , Ratas Sprague-Dawley , Selenio/sangre , Espectrometría por Rayos X
8.
Talanta ; 183: 258-267, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29567174

RESUMEN

A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (H2O2), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to H2O2 reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of H2O2 effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity. The proposed sensor is highly sensitive (limit of detection is 0.0006 U/L) and is feasible for screening inhibitors of AChE. The model for AChE inhibition was further established and two traditional AChE inhibitors (donepezil and tacrine) were employed to verify the feasibility of the system. The IC50 of donepezil and tacrine were estimated to be 1.4 nM and 3.5 nM, respectively. The developed protocol provides a new and promising platform for probing AChE activity and screening its inhibitors with low cost, high sensitivity and selectivity.


Asunto(s)
Acetilcolinesterasa/metabolismo , Técnicas Biosensibles , Inhibidores de la Colinesterasa/farmacología , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Técnicas Electroquímicas , Nanocables/química , Acetilcolina/química , Acetilcolina/metabolismo , Biocatálisis , Colina/biosíntesis , Colina/química , Inhibidores de la Colinesterasa/química , Cisteína/química , Cisteína/farmacología , Electrodos , Polímeros/química , Polímeros/farmacología , Plata/química , Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA