Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067804

RESUMEN

For space-based gravitational wave detection, a laser interferometric measurement system composed of a three-spacecraft formation offers the most rewarding bandwidth of astrophysical sources. There are no oscillators available that are stable enough so that each spacecraft could use its own reference frequency. The conversion between reference frequencies and their distribution between all spacecrafts for the synchronization of the different metrology systems is the job of the inter-spacecraft frequency setting strategy, which is important for continuously acquiring scientific data and suppressing measurement noise. We propose a hierarchical optimization algorithm to solve the frequency setting strategy. The optimization objectives are minimum total readout displacement noise and maximum beat-note frequency feasible range. Multiple feasible parameter combinations were obtained for the Taiji program. These optimized parameters include lower and upper bounds of the beat note, sampling frequency, pilot tone signal frequency, ultrastable clock frequencies, and modulation depth. Among the 20 Pareto optimal solutions, the minimum total readout displacement noise was 4.12 pm/Hz, and the maximum feasible beat-note frequency range was 23 MHz. By adjusting the upper bound of beat-note frequency and laser power transmitted by the telescope, we explored the effects of these parameters on the minimum total readout displacement noise and optimal local laser power in greater depth. Our results may serve as a reference for the optimal design of laser interferometry system instrument parameters and may ultimately improve the detection performance and continuous detection time of the Taiji program.

2.
Appl Opt ; 62(16): 4370-4380, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706930

RESUMEN

For space-based gravitational wave (GW) detection, the continuity of detection data acquisition is crucial to the inversion of wave sources and the realization of scientific goals. To control the inter-spacecraft beat-note frequency in an appropriate range for continuous gravitational wave detection and to reduce the upper bound of the beat-note frequency for improving the detection capability, a two-stage optimization algorithm is proposed to solve the offset frequency setting strategy in the Taiji program. The optimization objectives are the maximum offset frequency duration and minimum upper bound of the beat-note frequency. Considering all feasible phase-locked schemes, Doppler frequency shift, and the bandwidth of the phasemeter, a series of offset frequency setting strategies satisfying the conditions was obtained. The solution results show that the upper bound can be reduced to 16 MHz and, in this case, the offset frequency changes nine times with a minimum and maximum offset frequency duration of 90 days and 713 days, respectively. If the Doppler frequency shift is constrained, the minimum upper bound can be reduced to 14 MHz. When the minimum duration is increased, the minimum upper bound is increased. These results show that, by varying the offset frequency a limited number of times, the data continuity requirements of the Taiji program can be satisfied, and the phasemeter development difficulty and detection capability can be balanced, and may provide a reference for the phasemeter design, the setting of phase-locking schemes, and inter-spacecraft offset frequency in the Taiji program.

3.
Appl Opt ; 61(3): 837-843, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35200792

RESUMEN

For controlling the beat frequency of heterodyne interferometry so that the Taiji program can detect gravitational waves in space, an offset frequency setting strategy based on a linear programming algorithm is proposed. Considering factors such as Doppler frequency shift, phase-locking scheme, laser relative intensity noise, and phase detector bandwidth, inter-spacecraft offset frequency setting results suitable for the Taiji program are obtained. During the six years of running the detection process, the use of frequency bounds in the range of [5 MHz, 25 MHz] showed that offset frequencies will remain unchanged for a maximum of 1931 days. If the upper and lower bounds are adjusted, and the relative motion between spacecraft is further constrained, the offset frequencies do not need to change during the time of the mission. These results may provide insights into selecting the phase detector and designing operation parameters such as orbit and laser modulation frequency in the Taiji program.

4.
Vascular ; 30(5): 988-998, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34362270

RESUMEN

BACKGROUND: Hypertension associated with hyperhomocysteinemia (HHcy) is correlated with a high risk of vascular diseases. Studies found that folic acid (FA) supplementation can reduce the risk of cardiovascular and cerebrovascular events. The aim of the present study was to explore the potential mechanisms of FA attenuating HHcy-related arterial injury in spontaneously hypertensive rats (SHRs). METHODS: 24 SHRs were randomized into the control group, the HHcy group, and the HHcy + FA group (8 per group). The SHRs in the HHcy group and the HHcy + FA group were given DL-Hcy intraperitoneally to mimic hypertension associated with HHcy. The SHRs in the HHcy + FA group were given FA by gavage to mimic an FA-fortified diet. The histopathology and immunohistochemistry of rat aorta and carotid artery were analyzed, and the relative expression levels of immune/inflammation and oxidative stress molecules in arterial tissue were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. RESULTS: FA significantly reduced the expression levels of nuclear factor-κ-gene binding (NF-κB) p65/Rela and interleukin-6 (IL-6) in rat arterial tissues, as well as the levels of plasma HHcy and serum malondialdehyde (MDA) in hypertension associated with HHcy rats (p < 0.05). At the same time, FA significantly increased the serum superoxide dismutase (SOD) level in hypertension associated with HHcy rats, and even the SOD level of the HHcy + FA group was higher than that of the control group (p < 0.05). However, HHcy induced the opposite results of the above indicators in SHRs compared with the control group (p < 0.05). CONCLUSIONS: The arterial protection mechanisms of FA are related to reducing the concentration of HHcy to eliminate the tissue toxicity of HHcy, inhibiting NF-κBp65/Rela/IL-6 pathway molecules to regulate inflammatory response, and promoting the potential anti-oxidative stress pathway molecules to reduce oxidative stress level.


Asunto(s)
Arteritis , Hiperhomocisteinemia , Hipertensión , Animales , Arteritis/complicaciones , Ácido Fólico/farmacología , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/tratamiento farmacológico , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Interleucina-6 , Malondialdehído/metabolismo , FN-kappa B , Ratas , Ratas Endogámicas SHR , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA