Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Drug Des Devel Ther ; 12: 3961-3972, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30510404

RESUMEN

PURPOSE: Baicalein, a widely used Chinese herbal medicine, has shown anticancer effects on many types of human cancer cell lines. However, little is known about the underlying mechanism in human breast cancer cells. In this study, we examined the apoptotic and autophagic pathways activated following baicalein treatment in human breast cancer cells in vitro and in vivo. MATERIALS AND METHODS: In in vitro study, we used MTT and clone formation assay to confirm the inhibitory role of baicalein on proliferation of MCF-7 and MDA-MB-231 breast cancer cells. Apoptosis was detected employing Hoechst 33258 staining, JC-1 staining, and flow cytometry. Autophagy was monitored by acridine orange staining and transmission electron microscopy observation. Quantitative real-time PCR and Western blot analysis were employed to study the effects of baicalein on PI3K/AKT signaling components of MCF-7 and MDA-MB-231 breast cancer cells. In in vivo study, the effect of baicalein was tested with a breast cancer cells transplantation tumor model. RESULTS: Our study showed that baicalein has the potential to suppress cell proliferation, induce apoptosis and autophagy of breast cancer cells in vitro and in vivo. Furthermore, baicalein significantly downregulated the expression of p-AKT, p-mTOR, NF-κB, and p-IκB while enhancing the expression of IκB in MCF-7 and MDA-MB-231 cells. It also decreased the p-AKT/AKT and p-mTOR/mTOR ratios. CONCLUSION: Our study demonstrated that baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting the PI3K/AKT signaling pathway in vivo and vitro. Our study revealed that baicalein may be a potential therapeutic agent for breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Flavanonas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Flavanonas/administración & dosificación , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Conformación Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
2.
Drug Des Devel Ther ; 10: 1419-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27143851

RESUMEN

BACKGROUND: The flavonoid baicalein, a historically used Chinese herbal medicine, shows a wide range of biological and pharmaceutical effects, among which its potent antitumor activity has raised great interest in recent years. However, the molecular mechanism involved in the antimetastatic effect of baicalein remains poorly understood. This study aimed to verify the inhibitory effects of baicalein on metastasis of MDA-MB-231 human breast cancer cells both in vitro and in vivo, as well as to investigate the related mechanisms. METHODS: MTT assay was used to examine the inhibition of baicalein on proliferation of MDA-MB-231 cells. Wound healing assay and the in vitro invasion assay was carried out to investigate the effects of baicalein on migration and invasion of MDA-MB-231 cells, respectively. In order to explore the effects of baicalein on tumor metastasis in vivo, xenograft nude mouse model of MDA-MB-231 cells was established. Animals were randomly divided into four groups (control, therapy group, and low-dose and high-dose prevention group, n=6), and treated with baicalein as designed. Following sacrifice, their lungs and livers were collected to examine the presence of metastases. qRT-PCR and Western blot were performed to study the effects of baicalein on expression of SATB1, EMT-related molecules, and Wnt/ß-catenin signaling components of MDA-MB-231 cells as well as the metastatic tissue. Effects of baicalein on the expression of target proteins in vivo were also analyzed by immunohistochemistry. RESULTS: Our results indicated that baicalein suppressed proliferation, migration, and invasion of MDA-MB-231 cells in a time- and dose-dependent manner. Based on assays carried out in xenograft nude mouse model, we found that baicalein inhibited tumor metastasis in vivo. Furthermore, baicalein significantly decreased the expression of SATB1 in MDA-MB-231 cells. It suppressed the expression of vimentin and SNAIL while enhancing the expression of E-cadherin. Baicalein also downregulated the expression of Wnt1 and ß-catenin proteins and transcription level of Wnt/ß-catenin-targeted genes. CONCLUSION: Our results demonstrate that baicalein has the potential to suppress breast cancer metastasis, possibly by inhibition of EMT, which may be attributed to downregulation of both SATB1 and the Wnt/ß-catenin pathway. Taken together, baicalein may serve as a promising drug for metastasis treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Regulación hacia Abajo/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Flavanonas/farmacología , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Metástasis de la Neoplasia/tratamiento farmacológico , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Flavanonas/química , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Desnudos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Cicatrización de Heridas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Clin Oncol ; 4(4): 472-476, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27073644

RESUMEN

Breast cancer is one of the most commonly occurring female malignant tumors. According to the 2012 GLOBOCAN statistics, produced by the International Agency for Research On Cancer ('IARC'), nearly 1.7 million women were diagnosed with breast cancer, with 522,000 related deaths: An increase in the incidence of breast cancer and associated mortality by nearly 18% from 2008. Metastasis is the final step in breast cancer progression, and represents the most common cause of mortality in patients with breast cancer. Therefore, a search for low-toxicity, safe and effective anti-breast cancer drugs in the form of natural compounds has become an intense focus of research. Baicalein, a widely used Chinese herbal medicine, has extensive antitumor activity. The present review briefly describes the research that has been performed on the association between baicalein and breast cancer metastasis, and further illustrates the influence of baicalein on the underlying mechanisms of breast cancer metastasis, adding a novel theory basis for baicalein antitumor research. In conclusion, baicalein may represent a promising target for the prevention and therapy of breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA