Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Medicine (Baltimore) ; 103(14): e37512, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579077

RESUMEN

ShenGui capsule (SGC), as a herbal compound, has significant effects on the treatment of heart failure (HF), but its mechanism of action is unclear. In this study, we aimed to explore the potential pharmacological targets and mechanisms of SGC in the treatment of HF using network pharmacology and molecular docking approaches. Potential active ingredients of SGC were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform database and screened by pharmacokinetic parameters. Target genes of HF were identified by comparing the toxicogenomics database, GeneCards, and DisGeNET databases. Protein interaction networks and gene-disorder-target networks were constructed using Cytoscape for visual analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were also performed to identify protein functional annotations and potential target signaling pathways through the DAVID database. CB-DOCK was used for molecular docking to explore the role of IL-1ß with SGC compounds. Sixteen active ingredients in SGC were screened from the traditional Chinese medicine systems pharmacology database and analysis platform, of which 36 target genes intersected with HF target genes. Protein-protein interactions suggested that each target gene was closely related, and interleukin-1ß (IL-1ß) was identified as Hub gene. The network pharmacology analysis suggested that these active ingredients were well correlated with HF. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that target genes were highly enriched in pathways such as inflammation. Molecular docking results showed that IL-1ß binds tightly to SGC active components. This experiment provides an important research basis for the mechanism of action of SGC in the treatment of HF. In this study, the active compounds of SGC were found to bind IL-1ß for the treatment of heart failure.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Insuficiencia Cardíaca/tratamiento farmacológico , Mapas de Interacción de Proteínas , Bases de Datos Factuales , Interleucina-1beta , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
Environ Sci Pollut Res Int ; 30(23): 63915-63931, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37059955

RESUMEN

The immobilized lanthanum-modified biomass ash gel ball (CS-La-BA) was prepared with lanthanum chloride, biomass ash, and chitosan to remove phosphorus from water. CS-La-BA was characterized by several analytical techniques. SEM-EDS results showed that CS-La-BA has a well-developed pore structure and abundant adsorption sites. The surface area of BET is 75.46 m2/g and the pore size is mostly at 1.84 nm, indicating that it is a composite porous material with abundant microporous structure. The presence of La on biomass ash and the charge property of CS-La-BA were determined by XRD and zeta potential, and the adsorption mechanism of CS-La-BA on phosphate, including precipitation, electrostatic adsorption, ligand exchange, and complexation mechanism, was revealed by FTIR and XPS. The effects of pH, temperature, adsorbent dosage, initial phosphorus concentration, adsorption time, and coexisting ions on the phosphorus uptake performance of CS-La-BA were discussed. The adsorption experiment results show that the phosphorus removal rate of CS-La-BA can reach 95.6%. Even after six desorption and regeneration experiments, the phosphorus removal rate still reaches 68.13%, which indicates that CS-La-BA has good phosphorus adsorption performance and desorption and regeneration capacity. The phosphorus adsorption process of CS-La-BA conforms to the Freundlich isotherm adsorption equation and general-order kinetic model. The internal diffusion of the adsorption process is dominant, and the maximum adsorption capacity is 31.73 mg/g (25 ℃). Thermodynamic experiments show that the adsorption process of phosphorus by CS-La-BA is a spontaneous entropy increase process.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Fósforo , Quitosano/química , Lantano/química , Adsorción , Biomasa , Cinética , Concentración de Iones de Hidrógeno
3.
Sci China Life Sci ; 66(10): 2370-2379, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36949230

RESUMEN

Hypertension has become a growing public health concern worldwide. In fact, hypertension is commonly associated with increased morbidity and mortality. Currently, oligonucleotide drugs have proven to be promising therapeutic agents for various diseases. In the present study, we aimed to demonstrate that a herbal small RNA (sRNA), XKC-sRNA-h3 (B55710460, F221. I000082.B11), exhibits potent antihypertensive effects by targeting angiotensin-converting enzyme (ACE) in mice. When compared with captopril, oral administration of the sphingosine (d18:1)-XKC-sRNA-h3 bencaosome more effectively prevented angiotensin II-induced hypertensive cardiac damage and alleviated kidney injury in mice. Such findings indicated that XKC-sRNA-h3 may be a novel orally available ACE inhibitor type oligonucleotide drug for hypertension.


Asunto(s)
Angiotensina II , Hipertensión , Ratones , Animales , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Captopril/farmacología , Captopril/uso terapéutico , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Administración Oral , Presión Sanguínea
4.
Sci China Life Sci ; 66(7): 1589-1599, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808291

RESUMEN

The global COVID-19 pandemic emerged at the end of December 2019. Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are common lethal outcomes of bacterial lipopolysaccharide (LPS), avian influenza virus, and SARS-CoV-2. Toll-like receptor 4 (TLR4) is a key target in the pathological pathway of ARDS and ALI. Previous studies have reported that herbal small RNAs (sRNAs) are a functional medical component. BZL-sRNA-20 (Accession number: B59471456; Family ID: F2201.Q001979.B11) is a potent inhibitor of Toll-like receptor 4 (TLR4) and pro-inflammatory cytokines. Furthermore, BZL-sRNA-20 reduces intracellular levels of cytokines induced by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (poly (I:C)). We found that BZL-sRNA-20 rescued the viability of cells infected with avian influenza H5N1, SARS-CoV-2, and several of its variants of concern (VOCs). Acute lung injury induced by LPS and SARS-CoV-2 in mice was significantly ameliorated by the oral medical decoctosome mimic (bencaosome; sphinganine (d22:0)+BZL-sRNA-20). Our findings suggest that BZL-sRNA-20 could be a pan-anti-ARDS ALI drug.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Síndrome de Dificultad Respiratoria , Ratones , Humanos , Animales , Lipopolisacáridos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Pandemias , COVID-19/patología , SARS-CoV-2/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética , Citocinas/metabolismo , Pulmón/metabolismo
5.
J Ethnopharmacol ; 308: 116277, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36806342

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Wenyang Huayu Decoction (BWHD) is a traditional Chinese medicine for tonifying kidney and warming Yang, thereby resolving blood stasis and relieving pain. BWHD can significantly improve the clinical symptoms of patients with endometriosis (EMs), but its mechanism is still unclear. AIM OF THE STUDY: We evaluated the expression and role of the SIRT1-FoxO-1 pathway and autophagy levels in EMs rats. The therapeutic effects and potential therapeutic mechanisms of BWHD were also investigated. METHODS: Twenty rats were randomized into the sham group and eighty rats were used for model establishment by autologous transplantation. After successful modeling, they were randomized into the model, BWHD, EX527+BWHD and EX527 groups, with 20 rats in each group. All rats were intragastrically administered with for 3 weeks. Localization of Sirtuin 1 (SIRT1), Forkhead boxO-1 (FoXO-1), Beclin-1, autophagy-related 5 (Atg5) and autophagy-related 7 (Atg7) was determined by immunohistochemical staining. The expression of the above proteins was determined by Western blot and their messenger RNA (mRNA) levels were detected by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). RESULTS: The protein and mRNA expressions of FoXO-1, Beclin-1, Atg5 and Atg7 in the model group were markedly increased, while that of SIRT1 was markedly decreased relative to the sham group (p < 0.05 and p<0.01, respectively). Results showed that the protein and mRNA expressions of FoXO-1, Beclin-1, Atg5 and Atg7 in eutopic and ectopic endometrium of BWHD group were lower, while SIRT1 expression was higher than in the model group (p < 0.05 and p<0.01, respectively). Furthermore, protein and mRNA expression levels of FoXO-1, Beclin-1, Atg5 and Atg7 in eutopic and ectopic endometrium of EX527 group were higher, while SIRT1 level was significantly lower than in the model group (p < 0.05 and p < 0.01, respectively). The EX527-induced changes in protein and mRNA expressions were reversed in the EX527+BWHD group (p < 0.05 and p < 0.01, respectively). CONCLUSIONS: BWHD inhibits autophagy by up-regulating SIRT1 and down-regulating FoXO-1 expression in EMs via the SIRT1-FoXO-1 signaling pathway. Therefore, it is a potential treatment for EMs.


Asunto(s)
Endometriosis , Humanos , Femenino , Ratas , Animales , Endometriosis/metabolismo , Sirtuina 1/metabolismo , Beclina-1/metabolismo , Autofagia , ARN Mensajero
6.
Am J Phys Med Rehabil ; 102(6): 489-497, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228281

RESUMEN

OBJECTIVE: The aim of this study was to evaluate whether using surface neuromuscular electrical stimulation (NMES) for paralyzed lower-limb muscles results in an increase in energy expenditure and whether the number of activated muscles and duty cycle affect the potential increase. DESIGN: This was a cross-sectional study. RESULTS: Energy expenditure during all NMES protocols was significantly higher than the condition without NMES (1.2 ± 0.2 kcal/min), with the highest increase (+51%; +0.7 kcal/min, 95% confidence interval, 0.3-1.2) for the protocol with more muscles activated and the duty cycle with a shorter rest period. A significant decrease in muscle contraction size during NMES was found with a longer stimulation time, more muscles activated, or the duty cycle with a shorter rest period. CONCLUSION: Using NMES for paralyzed lower-limb muscles can significantly increase energy expenditure compared with sitting without NMES, with the highest increase for the protocol with more muscles activated and the duty cycle with a shorter rest period. Muscle fatigue occurred significantly with the more intense NMES protocols, which might cause a lower energy expenditure in a longer protocol. Future studies should further optimize the NMES parameters and investigate the long-term effects of NMES on weight management in people with SCI.


Asunto(s)
Terapia por Estimulación Eléctrica , Traumatismos de la Médula Espinal , Humanos , Estudios Transversales , Traumatismos de la Médula Espinal/complicaciones , Músculos , Terapia por Estimulación Eléctrica/métodos , Estimulación Eléctrica/métodos , Metabolismo Energético/fisiología , Músculo Esquelético/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-36437825

RESUMEN

Endometriosis has been found to be closely related to autophagy. This study aimed to elucidate the possible mechanism of Bushen Wenyang Huayu Decoction (BWHD) in treating endometriosis (EMs) by targeting TLR4/NF-κB-mediated autophagy. Autologous grafting was used to generate the EMs model in rats. Once the model was developed, BWHD high-dose and low-dose groups received intragastric administration of BWHD, and the gestrinone group served as a positive control. Immunofluorescence labeling and Western blotting were used for the protein expression of toll-like receptor 4 (TLR4), nuclear transcription factor-κB (NF-κB), Beclin-1, and selective autophagy connector protein P62 (P62). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze mRNA levels of TLR4, NF-κB, Beclin-1, and P62. We found that BWHD significantly reduced the size of ectopic lesions in rats with EMs, regulated reproductive hormone levels, and alleviated the cell autophagy level. It suggested that BWHD could be an effective treatment of EMs by targeting TLR4/NF-κB signaling pathway.

8.
IUBMB Life ; 74(6): 532-542, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35383402

RESUMEN

Coronavirus disease 2019, a newly emerging serious infectious disease, has spread worldwide. To date, effective drugs against the disease are limited. Traditional Chinese medicine was commonly used in treating COVID-19 patients in China. Here we tried to identify herbal effective lipid compounds from the lipid library of 92 heat-clearing and detoxication Chinese herbs. Through virtual screening, enzymatic activity and inhibition assays, and surface plasmon resonance tests, we identified lipid compounds targeting the main protease (Mpro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and verified their functions. Here, we found that natural lipid compounds LPC (14:0/0:0) and LPC (16:0/0:0) could target SARS-CoV-2 Mpro , recover cell death induced by SARS-CoV-2, and ameliorate acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induced by bacterial lipopolysaccharides and virus poly (I:C) mimics in vivo and in vitro. Our results suggest that LPC (14:0/0:0) and LPC (16:0/0:0) might be potential pan remedy against ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Tratamiento Farmacológico de COVID-19 , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Lípidos , Ratones , Simulación del Acoplamiento Molecular , SARS-CoV-2
9.
Phytomedicine ; 96: 153894, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34942457

RESUMEN

BACKGROUND: Dihydroquercetin (DHQ) is a flavonoid with strong anti-inflammatory and antioxidant effects. However, its protective activity against cigarette smoke-induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease and its underlying mechanisms remain unclear. PURPOSE: The present study was conducted to investigate the protective role of DHQ in the pathogenesis of COPD in vivo and in vitro. METHODS: A cigarette smoke-induced COPD mouse model was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). During the modeling process, the mice were intraperitoneally injected with DHQ daily. HBE cells were cultured with CSE with or without pretreatment with DHQ (40, 80 µM) or ML385 (10 µM). Cell viability was assessed by a cell counting kit 8 (CCK-8). The contents of malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by MDA and SOD assay kits, respectively, and reactive oxygen species (ROS) generation was detected by DCFH-DA assays. Protein expression levels of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPx4) and nuclear factor erythroid 2-related factor 2 (Nrf2) were measured by western blot. Lipid peroxidation was determined by C11-BODIPY staining. Transmission electron microscopy was used to observe the morphological features of the mitochondria. RESULTS: Treatment with DHQ significantly elevated ferroptosis-related protein (SLC7A11 and GPx4) expression in vivo and in vitro. The mRNA levels of SLC7A11 and GPx4 were also increased after DHQ treatment. The excessive MDA and ROS production and depleted SOD activity induced by CSE were reversed by DHQ. DHQ notably reduced the increased lipid peroxidation induced by CSE in HBE cells. In addition, treatment with DHQ attenuated the morphological changes in the mitochondria caused by CSE. Moreover, we also found that DHQ increased the levels of Nrf2 in a concentration-dependent manner in the cigarette smoke-induced COPD mouse model and CSE-treated HBE cells. Additionally, after administering an Nrf2-specific inhibitor, ML385, to HBE cells, the elevated SLC7A11 and GPx4 mRNA and protein levels induced by DHQ were reversed. Moreover, ML385 treatment attenuated the protective effect of DHQ on lipid peroxidation. CONCLUSION: Our results show that treatment with DHQ significantly reverses the ferroptosis induced by cigarette smoke both in vivo and in vitro via a Nrf2-dependent signaling pathway.


Asunto(s)
Ferroptosis , Enfermedad Pulmonar Obstructiva Crónica , Animales , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Quercetina/análogos & derivados , Humo/efectos adversos , Fumar
10.
Biochem Biophys Res Commun ; 579: 168-174, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34607170

RESUMEN

Rosiglitazone, a specific agonist of peroxisome proliferator-activated receptor-γ (PPAR-γ), displays a robust hypoglycemic action in patients with type 2 diabetes mellitus (T2DM) and elicits serious adverse reactions, especially hepatotoxicity and cardiotoxicity. Here, we aims to find a new natural PPAR-γ agonist with less adverse reactions than rosiglitazone in db/db mice. The method of virtual screening was used to identify a PPAR-γ agonist 18:0 Lyso PC from an in-house natural product library. We verified its pharmacological effects and adverse reactions comparing with rosiglitazone in vivo and in vitro. 18:0 Lyso PC exhibited pharmacological effects similar to those of rosiglitazone in db/db mice. Moreover, 18:0 Lyso PC showed a lower extent of liver injury and cardiotoxicity in db/db mice. The mechanism, by which this natural compound alleviates metabolic syndrome, involves a reduction in fatty acid synthesis mediated by activation of the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase-alpha (AMPKα) and acetyl-CoA carboxylase (ACC) and an increase expression of uncoupled protein 1 (UCP1) and PPAR-γ coactivator-1 alpha (PGC1-α). 18:0 Lyso PC, a natural compound, can show a similar hypoglycemic effect to rosiglitazone by activating PPAR-γ, while eliciting markedly fewer adverse reactions than rosiglitazone.


Asunto(s)
Productos Biológicos/química , Corazón/efectos de los fármacos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Lisofosfolípidos/química , PPAR gamma/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/metabolismo , Animales , Cardiotoxicidad , Química Farmacéutica/métodos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácidos Grasos/metabolismo , Lípidos/química , Masculino , Medicina Tradicional China , Ratones , Simulación del Acoplamiento Molecular , Rosiglitazona
11.
Int Immunopharmacol ; 96: 107593, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33819731

RESUMEN

BACKGROUND: Antioxidant and anti-inflammatory effects are two main pharmacological mechanisms of pirfenidone (PFD) besides the anti-fibrotic effect. This study aims to investigate whether PFD could mediate cigarette smoke extract (CSE) induced inflammation and oxidative stress in vitro and in vivo. METHODS: BALB/C mice and alveolar epithelial (A549) cells treated with CSE were established as disease models in vivo and in vitro. Effects of PFD treatment on disease models were further measured. Hematoxylin and eosin (HE) staining was used to evaluate the pathological changes in lung tissues of mice. CCK-8 assay kit was applied to measure the viability of A549 cells treated by different concentrations of PFD. Inflammation cytokine expression in cell supernatants was measured with ELISA kits. The mRNA and protein levels of inflammation and oxidative stress-related factors were determined by real-time quantitative polymerase chain reaction analysis (RT-qPCR) and Western blotting. Furthermore, myeloperoxidase (MPO), malondialdehyde (MDA), and total antioxidant capacity (T-AOC) were measured to detect the antioxidative activity of lung tissues. Moreover, an assay kit with fluorescent probe 2',7'-dichlorofluorescin diacetate (DCFH-DA) was used to evaluate the intracellular reactive oxygen species (ROS) generation. RESULTS: In vitro and in vivo, PFD significantly reversed TNF-α, IL-6, CCL2, SOD1, and CAT mRNA level changes led by CSE; in addition, PFD significantly decreased the ratios of p-p65 to p65, p-ikBα to ikBα and increased Nrf-2 protein level compared with CSE group. In mice, high-dose (100 mg/kg/d) PFD significantly reversed MPO and MDA increases induced by CSE. However, PFD didn't significantly reverse T-AOC decrease induced by CSE. In A549 cell supernatant, PFD dramatically reversed the elevated levels of TNF-α and IL-1ß induced by CSE. Furthermore, PFD could significantly reverse the increased level of ROS induced by CSE in A549 cells. CONCLUSION: Our study reveals the potential role of PFD in regulating inflammatory response and oxidative stress induced by CSE.


Asunto(s)
Antiinflamatorios/uso terapéutico , Fumar Cigarrillos/efectos adversos , Inflamación/tratamiento farmacológico , Pulmón/patología , Piridonas/uso terapéutico , Mucosa Respiratoria/efectos de los fármacos , Células A549 , Animales , Citocinas/metabolismo , Humanos , Inflamación/inducido químicamente , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo , Extractos Vegetales/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/fisiología , Transducción de Señal
12.
Bioresour Technol ; 323: 124634, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33422792

RESUMEN

The efficient depolymerization and hydrodeoxygenation of enzymatic hydrolysis lignin are achieved in cyclohexane solvents over a gamma-alumina supported nickel molybdenum alloy catalyst in a single step. Under initial 3 MPa hydrogen at 320 °C, the highest overall cycloalkane yield of 104.4 mg/g enzymatic hydrolysis lignin with 44.4 wt% selectivity of ethyl-cyclohexane was obtained. The reaction atmosphere and temperature have significant effects on enzymatic hydrolysis lignin conversion, product type and distribution. The conversion of enzymatic hydrolysis lignin was also investigated over different nickel and molybdenum-based catalysts, and the gamma-alumina supported nickel molybdenum alloy catalyst exhibited the highest activity among those catalysts. To reveal the reaction pathways of alkylphenol hydrodeoxygenation, 4-ethylphenol was tested as a model compound. Complete conversion of 4-ethylphenol into cycloalkanes was achieved. A two-step mechanism of 4-ethylphenol dihydroxylation - hydrogenation is proposed, in which the benzene ring saturation is deemed as the rate-determining step.


Asunto(s)
Cicloparafinas , Lignina , Aleaciones , Óxido de Aluminio , Catálisis , Hidrólisis , Molibdeno , Níquel
13.
Sci China Life Sci ; 63(9): 1428, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32676969

RESUMEN

Following the published article, we noticed an error duplication in Figure 5G "control" and "PGY-6" that was introduced during the revised process, with an attempt to replace it with higher-resolution images. Here we provide the original data in the first submitted manuscript (Figure 5G).

14.
Biotechnol J ; 14(12): e1900132, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31119892

RESUMEN

The large-scale use of petrochemical-based plastics is damaging our environment. Discarded plastics are harmful to both marine and land animals, sometimes causing death when ingested. Biodegradable plastics have gained attentions from the public and the academia to reduce environmental burdens. Poly-3-hydroxybutyrate (PHB), the simplest and the best-studied bioplastic member of the polyhydroxyalkanoate (PHA) family synthesized by many bacteria, has been studied as a feed additive for large yellow croaker fish and weaned piglets. The fish grow faster and gain more weight when 1% and 2% PHB is added as a feed additive, accompanied by increased survival rates. Weaned piglets are found to grow normally and showed no significant change in average daily weight gains, average daily feed intakes, feed efficiency, and organ developments when 0.5% PHB is added to the feed. It can therefore be concluded that biodegradable and biocompatible PHB is not harmful as a feed additive for marine large yellow croakers and sensitive weaned piglets. PHB therefore holds great promise as a plastic that combines biodegradability and biocompatibility with good tolerability as a feed supplement for animals.


Asunto(s)
Alimentación Animal , Bacterias/metabolismo , Biopolímeros , Hidroxibutiratos , Poliésteres , Animales , Materiales Biocompatibles , Plásticos Biodegradables , Biodegradación Ambiental , Biopolímeros/química , Composición Corporal , Suplementos Dietéticos , Contaminación Ambiental , Peces/crecimiento & desarrollo , Aditivos Alimentarios , Hidroxibutiratos/química , Poliésteres/química , Polihidroxialcanoatos/química , Porcinos/crecimiento & desarrollo
15.
Sci China Life Sci ; 62(3): 333-348, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30900166

RESUMEN

Traditionally, herbal medicine is consumed by drinking decoctions produced by boiling herbs with water. The functional components of the decoction are heat stable. Small RNAs (sRNAs) were reported as a new class of functional components in decoctions. However, the mechanisms by which sRNAs survive heat treatment of the decoction and enter cells are unclear. Previous studies showed that plant-derived exosome-like nanoparticles (ELNs), which we call botanosomes, could deliver therapeutic reagents in vivo. Here, we report that heat-stable decoctosomes (ELNs) from decoctions have more therapeutic effects than the decoctions in vitro and demonstrate therapeutic efficacy in vivo. Furthermore, sRNAs, such as HJT-sRNA-m7 and PGY-sRNA-6, in the decoctosome exhibit potent anti-fibrosis and anti-inflammatory effects, respectively. Decoctosome is comprised of lipids, chemical compounds, proteins, and sRNAs. A medical decoctosome mimic is called bencaosome. A single lipid sphinganine (d22:0) identified in the decoctosome was mixed and heated with the synthesized sRNAs to form the simplest bencaosome. This simple bencaosome structure was identified by critical micelle concentration (cmc) assay that sRNAs coassembled with sphinganine (d22:0) to form the lipid layers of vesicles. The heating process facilitates co-assembly of sRNAs and sphinganine (d22:0) until a steady state is reached. The artificially produced sphinganine-HJT-sRNA-m7 and sphinganine- PGY-sRNA-6 bencaosomes could ameliorate bleomycin-induced lung fibrosis and poly(I:C)-induced lung inflammation, respectively, following oral administration in mice. Our study not only demonstrates that the herbal decoctosome may represent a combinatory remedy in precision medicine but also provides an effective oral delivery route for nucleic acid therapy.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Fibrosis Pulmonar/prevención & control , ARN de Planta/genética , ARN Interferente Pequeño/genética , Células A549 , Animales , Bleomicina , Línea Celular , Estabilidad de Medicamentos , Medicamentos Herbarios Chinos/química , Regulación de la Expresión Génica , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lípidos/química , Masculino , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Nanoestructuras/ultraestructura , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , ARN de Planta/química , ARN de Planta/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo
16.
Mol Biosyst ; 10(10): 2517-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25000319

RESUMEN

Traditional Chinese medicine (TCM) is a multi-component and multi-target agent and could treat complex diseases in a holistic way, especially infection diseases. However, the underlying pharmacology remains unclear. Fortunately, network pharmacology by integrating system biology and polypharmacology provides a strategy to address this issue. In this work, Reduning Injection (RDN), a well-used TCM treatment in the clinic for upper respiratory tract infections (URTIs), was investigated to interpret the molecular mechanism and predict new clinical directions by integrating molecular docking, network analysis and cell-based assays. 32 active ingredients and 38 potential targets were identified. In vitro experiments confirmed the bioactivities of the compounds against lipopolysaccharide (LPS)-stimulated PGE2 and NO production in RAW264.7 cells. Moreover, network analysis showed that RDN could not only inhibit viral replication but also alleviate the sickness symptoms of URTIs through directly targeting the key proteins in the respiratory viral life cycle and indirectly regulating host immune systems. In addition, other clinical applications of RDN such as neoplasms, cardiovascular diseases and immune system diseases were predicted on the basis of the relationships between targets and diseases.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Modelos Biológicos , Redes Neurales de la Computación , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Animales , Antiinflamatorios/química , Línea Celular , Fenómenos Químicos , Medicamentos Herbarios Chinos/química , Humanos , Ratones , Unión Proteica , Reproducibilidad de los Resultados , Infecciones del Sistema Respiratorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA