Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 305: 135418, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35750233

RESUMEN

Neonicotinoids, such as Imidacloprid (IMI), are frequently detected in water and wastewater, posing a threat on both the environment and the health of living things. In this work, a novel algae-bacteria biofilm reactor (ABBR) was constructed to remove IMI and conventional nutrients from municipal wastewater, aiming to explore the removal effect and advantage of ABBR. Results showed that ABBR achieved 74.9% removal of IMI under 80 µmol m-2·s-1 light, higher than photobioreactor (PBR) without biofilm (61.2%) or ABBR under 40 µmol m-2·s-1 light (48.4%) after 16 days of operation. Moreover, it also showed that ABBR allowed a marked improvement on the removal of total dissolved nitrogen (TDN), total dissolved phosphorus (TDP) and soluble chemical oxygen demand (sCOD). ABBR showed different IMI removal efficiencies and bacterial communities under different light conditions, indicating that light played an important role in driving ABBR. The merits of ABBR are including (i) ABBR showed rapid pollutant removal in a short time, (ii) in ABBR, stable consortiums were formed and chlorophyll content in effluent was very low, (iii) compared with PBR, degradation products in ABBR showed lower biological toxicity. Our study highlights the benefits of ABBR on IMI removing from municipal wastewater and provides an effective and environment-friendly engineering application potential of IMI removal.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Bacterias , Biopelículas , Reactores Biológicos , Iluminación , Neonicotinoides , Nitrocompuestos , Nitrógeno , Nutrientes , Fósforo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA