Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294917

RESUMEN

Recombinant tissue plasminogen activator (rtPA) is the only thrombolytic agent that has been approved by the FDA for treatment of ischemic stroke. However, a high dose intravenous infusion is required to maintain effective drug concentration, owing to the short half-life of the thrombolytic drug, whereas a momentous limitation is the risk of bleeding. We envision a dual targeted strategy for rtPA delivery will be feasible to minimize the required dose of rtPA for treatment. For this purpose, rtPA and fibrin-avid peptide were co-immobilized to poly(lactic-co-glycolic acid) (PLGA) magnetic nanoparticles (PMNP) to prepare peptide/rtPA conjugated PMNPs (pPMNP-rtPA). During preparation, PMNP was first surface modified with avidin, which could interact with biotin. This is followed by binding PMNP-avidin with biotin-PEG-rtPA (or biotin-PEG-peptide), which was prepared beforehand by binding rtPA (or peptide) to biotin-PEG-maleimide while using click chemistry between maleimide and the single -SH group in rtPA (or peptide). The physicochemical property characterization indicated the successful preparation of the magnetic nanoparticles with full retention of rtPA fibrinolysis activity, while biological response studies underlined the high biocompatibility of all magnetic nanoparticles from cytotoxicity and hemolysis assays in vitro. The magnetic guidance and fibrin binding effects were also confirmed, which led to a higher thrombolysis rate in vitro using PMNP-rtPA or pPMNP-rtPA when compared to free rtPA after static or dynamic incubation with blood clots. Using pressure-dependent clot lysis model in a flow system, dual targeted pPMNP-rtPA could reduce the clot lysis time for reperfusion by 40% when compared to free rtPA at the same drug dosage. From in vivo targeted thrombolysis in a rat embolic model, pPMNP-rtPA was used at 20% of free rtPA dosage to restore the iliac blood flow in vascular thrombus that was created by injecting a blood clot to the hind limb area.


Asunto(s)
Portadores de Fármacos/química , Fibrinolíticos/química , Fibrinolíticos/farmacología , Nanopartículas de Magnetita/química , Péptidos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Activador de Tejido Plasminógeno/administración & dosificación , Animales , Avidina/química , Fenómenos Químicos , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Desarrollo de Medicamentos , Embolia/tratamiento farmacológico , Embolia/etiología , Fibrinólisis/efectos de los fármacos , Ratas , Proteínas Recombinantes/administración & dosificación , Análisis Espectral , Nanomedicina Teranóstica , Termogravimetría , Terapia Trombolítica/métodos , Trombosis/tratamiento farmacológico
2.
Nanomedicine ; 20: 101992, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30981818

RESUMEN

In previously published studies, intra-arterial (i.a.), but not intravenous (i.v.) delivery of recombinant tissue-type plasminogen activator (rtPA) immobilized on the surface of magnetic nanoparticles induces thrombolysis by magnetic targeting. We asked whether i.v. delivery of protected rtPA in a thermosensitive magnetoliposome (TML@rtPA) may achieve target thrombolysis. PEGylated TML@rtPA was optimized and characterized; controlled release of rtPA was achieved by thermodynamic and magnetic manipulation in vitro. The lysis index of TML@rtPA incubated with blood at 43 °C vs. 37 °C was 53 ±â€¯11% vs. 81 ±â€¯3% in thromboelastograms, suggesting thermosensitive thrombolysis of TML@rtPA. In a rat embolic model with superfusion of 43 °C saline on a focal spot on the iliac artery with clot lodging, release of rtPA equivalent to 20% regular dose from TML@rtPA administered i.a. vs. i.v. significantly restored iliac blood flow 15 vs. 55 min after clot lodging, respectively. TML@rtPA with magnetic guiding and focal hyperthermia may be potentially amendable to target thrombolysis.


Asunto(s)
Hipertermia Inducida , Fenómenos Magnéticos , Terapia Trombolítica , Activador de Tejido Plasminógeno/administración & dosificación , Administración Intravenosa , Animales , Materiales Biocompatibles/química , Liposomas , Masculino , Nanocompuestos/química , Nanocompuestos/ultraestructura , Tamaño de la Partícula , Ratas Sprague-Dawley , Temperatura , Trombosis
3.
Nanoscale ; 6(17): 10297-306, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25069428

RESUMEN

Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 µM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.


Asunto(s)
Camellia sinensis/química , Catequina/análogos & derivados , Glioma/química , Nanopartículas de Magnetita/química , Nanocápsulas/química , Extractos Vegetales/química , Animales , Catequina/química , Línea Celular , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/síntesis química , Difusión , Humanos , Nanopartículas de Magnetita/ultraestructura , Ensayo de Materiales , Nanocápsulas/ultraestructura , Tamaño de la Partícula , Ratas , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA