Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 860: 160532, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36455728

RESUMEN

Nutrient losses from farms affects environmental and human health, but retention by riparian buffers can vary by nutrient identity, flow path, soil texture, seasonality, and buffer width. On conventional farms with corn, we test the relationships between levels of dissolved nitrogen (N) and phosphorus (P) in downslope surface-water, and flow paths relating to porewater in soils (to 40 cm deep), groundwater of the saturated zone (to 2.5 m deep), soil nutrient pools, and changes in plant biomass and tissue quality by season. We found that the major drivers of surface-water nutrients were multi-factor and nutrient-specific, variously relating to soil, climate, vegetation uptake, and tiling on clay soils. N retention was best explained by soil type, with 10 times more surface-water N in the sand versus clay setting, despite identical fertilization rates on corn. P retention was best explained by precipitation and time of year. Vegetation uptake was strongest for shallow-soil porewater, and was greatest in buffers where root biomass was 20 times greater by weight. We were unable to detect any impact of vegetative uptake on groundwater nutrients. Overall, peak nutrient inputs to surface-water were in early summer, fall, and winter - all times when plant uptake is low. Buffers appear to be a necessary component of nutrient capture on farms, but insufficient unless partnered with measures that reduce nutrient flows at times when plants are inactive.


Asunto(s)
Agricultura , Suelo , Humanos , Arcilla , Plantas , Nutrientes , Agua , Nitrógeno/análisis , Fósforo
2.
Artículo en Inglés | MEDLINE | ID: mdl-27114575

RESUMEN

Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.


Asunto(s)
Biota/fisiología , Clima , Eutrofización , Pradera , Especies Introducidas , Cambio Climático , Micronutrientes/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Fenómenos Fisiológicos de las Plantas , Potasio/metabolismo
3.
Nat Commun ; 6: 7710, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26173623

RESUMEN

Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.


Asunto(s)
Biodiversidad , Ecosistema , Alimentos , Pradera , Herbivoria , Especies Introducidas , Plantas , Suelo/química , Animales , Eutrofización , Nitrógeno , Fósforo , Vertebrados
4.
Oecologia ; 163(3): 775-84, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20179971

RESUMEN

Invasive plant species can form dense populations across large tracts of land. Based on these observations of dominance, invaders are often described as competitively superior, despite little direct evidence of competitive interactions with natives. The few studies that have measured competitive interactions have tended to compare an invader to natives that are unlikely to be strong competitors because they are functionally different. In this study, we measured competitive interactions among an invasive grass and two Australian native grasses that are functionally similar and widely distributed. We conducted a pair-wise glasshouse experiment, where we manipulated both biotic factors (timing of establishment, neighbour identity and density) and abiotic factors (nutrients and timing of water supply). We found that the invader significantly suppressed the performance of the natives; but its suppression ability was contingent on resource levels, with pulsed water/low nutrients or continuous watering reducing its competitive effects. The native grasses were able to suppress the performance of the invader when given a 3-week head-start, suggesting the invader may be incapable of establishing unless it emerges first, including in its own understorey. These findings provide insight for restoration, as the competitive effect of a functionally similar invader may be reduced by altering abiotic and biotic conditions in favour of natives.


Asunto(s)
Atmósfera , Monitoreo del Ambiente , Luz , Poaceae/fisiología , Proyectos de Investigación , Abastecimiento de Agua , Nitrógeno/metabolismo , Oxígeno/metabolismo , Fósforo/metabolismo , Poaceae/clasificación , Dinámica Poblacional , Queensland , Especificidad de la Especie , Factores de Tiempo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA