Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 16(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542697

RESUMEN

Oral iron supplementation is the first-line treatment for addressing iron deficiency, a concern particularly relevant to women who are susceptible to sub-optimal iron levels. Nevertheless, the impact of iron supplementation on the gut microbiota of middle-aged women remains unclear. To investigate the association between iron supplementation and the gut microbiota, healthy females aged 40-65 years (n = 56, BMI = 23 ± 2.6 kg/m2) were retrospectively analyzed from the Alberta's Tomorrow Project. Fecal samples along with various lifestyle, diet, and health questionnaires were obtained. The gut microbiota was assessed by 16S rRNA sequencing. Individuals were matched by age and BMI and classified as either taking no iron supplement, a low-dose iron supplement (6-10 mg iron/day), or high-dose iron (>100 mg/day). Compositional and functional analyses of microbiome data in relation to iron supplementation were investigated using various bioinformatics tools. Results revealed that iron supplementation had a dose-dependent effect on microbial communities. Elevated iron intake (>100 mg) was associated with an augmentation of Proteobacteria and a reduction in various taxa, including Akkermansia, Butyricicoccus, Verrucomicrobia, Ruminococcus, Alistipes, and Faecalibacterium. Metagenomic prediction further suggested the upregulation of iron acquisition and siderophore biosynthesis following high iron intake. In conclusion, adequate iron levels are essential for the overall health and wellbeing of women through their various life stages. Our findings offer insights into the complex relationships between iron supplementation and the gut microbiota in middle-aged women and underscore the significance of iron dosage in maintaining optimal gut health.


Asunto(s)
Microbioma Gastrointestinal , Persona de Mediana Edad , Humanos , Femenino , Hierro , ARN Ribosómico 16S/genética , Estudios Retrospectivos , Suplementos Dietéticos
2.
Int J Sport Nutr Exerc Metab ; 30(3): 197-202, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32698123

RESUMEN

We tested the hypothesis that presleep consumption of α-lactalbumin (LA), a fraction of whey with a high abundance of tryptophan, would improve indices of sleep quality and time-trial (TT) performance in cyclists relative to an isonitrogenous collagen peptide (CP) supplement lacking tryptophan. Using randomized, double-blind, crossover designs, cyclists consumed either 40 g of LA or CP 2 hr prior to sleep. In Study 1, six elite male endurance track cyclists (age 23 ± 6 years, V˙O2peak 70.2 ± 4.4 ml·kg-1·min-1) consumed a supplement for three consecutive evenings before each 4-km TT on a velodrome track, whereas in Study 2, six well-trained cyclists (one female; age 24 ± 5 years, V˙O2peak 66.9 ± 8.3 ml·kg-1·min-1) consumed a supplement the evening before each 4-km TT on a stationary cycle ergometer. Indices of sleep quality were assessed with wrist-based actigraphy. There were no differences between the CP and LA supplements in terms of total time in bed, total sleep time, or sleep efficiency in Study 1 (LA: 568 ± 71 min, 503 ± 67 min, 88.3% ± 3.4%; CP: 546 ± 30 min, 479 ± 35 min, 87.8% ± 3.1%; p = .41, p = .32, p = .74, respectively) or Study 2 (LA: 519 ± 90 min, 450 ± 78 min, 87.2% ± 7.6%; CP: 536 ± 62 min, 467 ± 57 min, 87.3% ± 6.4%; p = .43, p = .44, p = .97, respectively). Similarly, time to complete the 4-km TT was unaffected by supplementation in Study 1 (LA: 274.9 ± 7.6 s; CP: 275.5 ± 7.2 s; p = .62) and Study 2 (LA: 344.3 ± 22.3 s; CP: 343.3 ± 23.0 s; p = .50). Thus, relative to CP, consuming LA 2 hr prior to sleep over 1-3 days did not improve actigraphy-based indices of sleep quality or 4-km TT performance in cyclists.


Asunto(s)
Rendimiento Atlético , Ciclismo , Suplementos Dietéticos , Lactalbúmina/administración & dosificación , Sueño , Actigrafía , Adolescente , Adulto , Estudios Cruzados , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Consumo de Oxígeno , Adulto Joven
3.
Med Sci Sports Exerc ; 52(6): 1394-1403, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31895298

RESUMEN

INTRODUCTION: Protein ingestion and the ensuing hyperaminoacidemia stimulates skeletal muscle protein synthesis in the postexercise period. This response facilitates muscle remodeling, which is important during intensified training. The aim of this study was to determine whether supplementation with α-lactalbumin (LA), with high leucine and tryptophan contents, would improve responses to short periods of intensified aerobic training compared with supplementation with an isonitrogenous quantity of collagen peptides (CP). METHODS: Endurance-trained participants (5 male, 6 female, 24 ± 4 yr, V˙O2 = 53.2 ± 9.1 mL·kg·min, peak power output = 320 ± 48 W; means ± SD) consumed a controlled diet (1.0 g·kg·d protein) and refrained from habitual training for 11 d while taking part in this double-blind randomized, crossover trial. The two intervention phases, which consisted of brief intensified training (4 × 4-min cycling intervals at 70% of peak power output on 3 consecutive days) combined with the ingestion of LA or CP supplements after exercise (20 g) and before sleep (40 g), were separated by 4 d of washout without protein supplementation (i.e., the control phase). In response to each phase, myofibrillar (MyoPS), sarcoplasmic protein synthesis (SarcPS) rates (via H2O ingestion) and parameters of sleep quality were measured. RESULTS: LA ingestion increased plasma leucine (P < 0.001) and tryptophan concentrations (P < 0.001) relative to CP. Intensified training increased MyoPS and SarcPS above the washout phase in LA- and CP-supplemented phases (P < 0.01), with increases being 13% ± 5% and 5% ± 7% greater with LA than CP for MyoPS (P < 0.01) and SarcPS, respectively (P < 0.01). CONCLUSIONS: Despite an isonitrogenous diet, protein synthesis was enhanced to a greater extent when trained participants consumed LA compared with CP during intensified aerobic training, suggesting that protein quality is an important consideration for endurance-trained athletes aiming to augment adaption to exercise training.


Asunto(s)
Colágeno/administración & dosificación , Suplementos Dietéticos , Ejercicio Físico/fisiología , Lactalbúmina/administración & dosificación , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Acondicionamiento Físico Humano/fisiología , Disponibilidad Biológica , Femenino , Humanos , Leucina/administración & dosificación , Leucina/sangre , Masculino , Miofibrillas/metabolismo , Retículo Sarcoplasmático/metabolismo , Sueño/fisiología , Triptófano/administración & dosificación , Triptófano/sangre , Adulto Joven
4.
J Appl Physiol (1985) ; 121(6): 1282-1289, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27763877

RESUMEN

We reported that supplementation with green tea extract (GTE) lowered the glycemic response to an oral glucose load following exercise, but via an unknown mechanism (Martin BJ, MacInnis MJ, Gillen JB, Skelly LE, Gibala MJ. Appl Physiol Nutr Metab 41: 1057-1063, 2016. Here we examined the effect of supplementation with GTE on plasma glucose kinetics on ingestion of a glucose beverage during exercise recovery. Eleven healthy, sedentary men (21 ± 2 yr old; body mass index = 23 ± 4 kg/m2, peak O2 uptake = 38 ± 7 ml·kg-1·min-1; means ± SD) ingested GTE (350 mg) or placebo (PLA) thrice daily for 7 days in a double-blind, crossover design. In the fasted state, a primed constant infusion of [U-13C6]glucose was started, and 1 h later, subjects performed a graded exercise test (25 W/3 min) on a cycle ergometer. Immediately postexercise, subjects ingested a 75-g glucose beverage containing 2 g of [6,6-2H2]glucose, and blood samples were collected every 10 min for 3 h of recovery. The rate of carbohydrate oxidation was lower during exercise after GTE vs. PLA (1.26 ± 0.34 vs. 1.48 ± 0.51 g/min, P = 0.04). Glucose area under the curve (AUC) was not different between treatments after drink ingestion (GTE = 1,067 ± 133 vs. PLA = 1,052 ± 91 mM/180 min, P = 0.91). Insulin AUC was lower after GTE vs. PLA (5,673 ± 2,153 vs. 7,039 ± 2,588 µIU/180 min, P = 0.05), despite similar rates of glucose appearance (GTE = 0.42 ± 0.16 vs. PLA = 0.43 ± 0.13 g/min, P = 0.74) and disappearance (GTE = 0.43 ± 0.14 vs. PLA = 0.44 ± 0.14 g/min, P = 0.57). We conclude that short-term GTE supplementation did not affect glucose kinetics following ingestion of an oral glucose load postexercise; however, GTE was associated with attenuated insulinemia. These findings suggest GTE lowers the insulin required for a given glucose load during postexercise recovery, which warrants further mechanistic studies in humans.


Asunto(s)
Ingestión de Alimentos/fisiología , Ejercicio Físico/fisiología , Glucosa/metabolismo , Extractos Vegetales/administración & dosificación , Té/química , Adulto , Glucemia/metabolismo , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Glucosa/administración & dosificación , Humanos , Insulina/metabolismo , Masculino , Oxidación-Reducción , Adulto Joven
5.
Int J Sport Nutr Exerc Metab ; 25(6): 541-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26008634

RESUMEN

Sprint interval training (SIT), repeated bouts of high-intensity exercise, improves skeletal muscle oxidative capacity and exercise performance. ß-alanine (ß-ALA) supplementation has been shown to enhance exercise performance, which led us to hypothesize that chronic ß-ALA supplementation would augment work capacity during SIT and augment training-induced adaptations in skeletal muscle and performance. Twenty-four active but untrained men (23 ± 2 yr; VO2peak = 50 ± 6 mL · kg(-1) · min(-1)) ingested 3.2 g/day of ß-ALA or a placebo (PLA) for a total of 10 weeks (n = 12 per group). Following 4 weeks of baseline supplementation, participants completed a 6-week SIT intervention. Each of 3 weekly sessions consisted of 4-6 Wingate tests, i.e., 30-s bouts of maximal cycling, interspersed with 4 min of recovery. Before and after the 6-week SIT program, participants completed a 250-kJ time trial and a repeated sprint test. Biopsies (v. lateralis) revealed that skeletal muscle carnosine content increased by 33% and 52%, respectively, after 4 and 10 weeks of ß-ALA supplementation, but was unchanged in PLA. Total work performed during each training session was similar across treatments. SIT increased markers of mitochondrial content, including cytochome c oxidase (40%) and ß-hydroxyacyl-CoA dehydrogenase maximal activities (19%), as well as VO2peak (9%), repeated-sprint capacity (5%), and 250-kJ time trial performance (13%), but there were no differences between treatments for any measure (p < .01, main effects for time; p > .05, interaction effects). The training stimulus may have overwhelmed any potential influence of ß-ALA, or the supplementation protocol was insufficient to alter the variables to a detectable extent.


Asunto(s)
Músculo Esquelético/fisiología , Acondicionamiento Físico Humano , Fenómenos Fisiológicos en la Nutrición Deportiva , beta-Alanina/administración & dosificación , Adaptación Fisiológica , Adulto , Carnosina/química , Suplementos Dietéticos , Método Doble Ciego , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Humanos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno , Adulto Joven
6.
Int J Sport Nutr Exerc Metab ; 25(4): 359-66, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25811674

RESUMEN

Beetroot juice (BR) has been shown to lower the oxygen cost of exercise in normoxia and may have similar effects in hypoxia. We investigated the effect of BR on steady-state exercise economy and 10-km time trial (TT) performance in normoxia and moderate hypoxia (simulated altitude: ~2500 m). Eleven trained male cyclists (VO 2peak ≥ 60 ml · kg(-1) · min(-1)) completed four exercise trials. Two hours before exercise, subjects consumed 70 mL BR (~6 mmol nitrate) or placebo (nitrate-depleted BR) in a randomized, double-blind manner. Subjects then completed a 15-min self-selected cycling warm-up, a 15-min steady-state exercise bout at 50% maximum power output, and a 10-km time trial (TT) in either normoxia or hypoxia. Environmental conditions were randomized and single-blind. BR supplementation increased plasma nitrate concentration and fraction of exhaled nitric oxide relative to PL (p < .05 for both comparisons). Economy at 50% power output was similar in hypoxic and normoxic conditions (p > .05), but mean power output was greater in the normoxic TT relative to the hypoxic TT (p < .05). BR did not affect economy, steady-state SpO2, mean power output, or 10-km TT completion time relative to placebo in either normoxia or hypoxia (p > .05 in all comparisons). In conclusion, BR did not lower the oxygen cost of steady-state exercise or improve exercise performance in normoxia or hypoxia in a small sample of well-trained male cyclists.


Asunto(s)
Rendimiento Atlético , Beta vulgaris/química , Fatiga/prevención & control , Jugos de Frutas y Vegetales , Consumo de Oxígeno , Raíces de Plantas/química , Fenómenos Fisiológicos en la Nutrición Deportiva , Adulto , Ciclismo , Pruebas Respiratorias , Colombia Británica , Estudios Cruzados , Método Doble Ciego , Fatiga/sangre , Fatiga/etiología , Fatiga/metabolismo , Jugos de Frutas y Vegetales/análisis , Humanos , Hipoxia/fisiopatología , Masculino , Nitratos/sangre , Nitratos/metabolismo , Nitratos/uso terapéutico , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Sustancias para Mejorar el Rendimiento/uso terapéutico , Índice de Severidad de la Enfermedad , Método Simple Ciego
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA