Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(4): e0072822, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862980

RESUMEN

Tuberculosis (TB) remains one of the leading causes of death due to a single pathogen. The emergence and proliferation of multidrug-resistant (MDR-TB) and extensively drug-resistant strains (XDR-TB) represent compelling reasons to invest in the pursuit of new anti-TB agents. The shikimate pathway, responsible for chorismate biosynthesis, which is a precursor of important aromatic compounds, is required for Mycobacterium tuberculosis growth. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (MtbDAHPS) catalyzes the first step in the shikimate pathway and it is an attractive target for anti-tubercular agents. Here, we used a CRISPRi system to evaluate the DAHPS as a vulnerable target in M. tuberculosis. The silencing of aroG significantly reduces the M. tuberculosis growth in both rich medium and, especially, in infected murine macrophages. The supplementation with amino acids was only able to partially rescue the growth of bacilli, whereas the Aro supplement (aromix) was enough to sustain the bacterial growth at lower rates. This study shows that MtbDAHPS protein is vulnerable and, therefore, an attractive target to develop new anti-TB agents. In addition, the study contributes to a better understanding of the biosynthesis of aromatic compounds and the bacillus physiology. IMPORTANCE Determining the vulnerability of a potential target allows us to assess whether its partial inhibition will impact bacterial growth. Here, we evaluated the vulnerability of the enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) from M. tuberculosis by silencing the DAHPS-coding aroG gene in different contexts. These results could lead to the development of novel and potent anti-tubercular agents in the near future.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa , Mycobacterium tuberculosis , 3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Animales , Antituberculosos/farmacología , Ratones , Mycobacterium tuberculosis/metabolismo , Fosfatos
2.
J Adhes Dent ; 24(1): 233-245, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575656

RESUMEN

PURPOSE: To identify and discuss the available surface treatments and adhesives for polyetheretherketone (PEEK) to increase its bond strength to resin-based materials used in dentistry. MATERIALS AND METHODS: The reporting of this scoping review was based on PRISMA. The study protocol was made available at: https://osf.io/4nur9/. Studies which evaluated PEEK surface treatments and its bond strength to resin-based materials were selected. The search was performed in PubMed, Scopus, Web of Sciences and Cochrane databases. The screening was undertaken by 3 independent researchers using the Rayyan program. A descriptive analysis was performed considering study characteristics and main findings (title, data of publication, authors, PEEK characteristics, surface treatments, control group, bonded set, luting agent, specimen geometry, storage, thermocycling, pre-test failures, test geometry, failure analysis, main findings, and compliance with normative guidelines). RESULTS: The initial search yielded 1965 articles, of which 32 were included for descriptive analysis. The review showed that the use of surface treatments and adhesives are important to promote bond strength to PEEK. Up until now, various surface treatments have been explored for bond improvement to PEEK. Sulfuric acid etching is commonly reported as promoting the highest bond strength, followed by alumina-particle air abrasion. Regarding adhesives, the use of a specific adhesive containing MMA, PETIA (pentaerythritol triacrylate), and dimethacrylates yields the best adhesive performance. CONCLUSION: Sulfuric acid etching and alumina particle air abrasion followed by application of bonding agents containing MMA, PETIA and dimethacrylates are the most effective choices to increase resin-based materials' adhesion to PEEK.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Abrasión Dental por Aire , Óxido de Aluminio/química , Benzofenonas , Cementos Dentales , Cetonas/química , Ensayo de Materiales , Polietilenglicoles/química , Polímeros , Cementos de Resina/química , Resistencia al Corte , Propiedades de Superficie
3.
J Mech Behav Biomed Mater ; 120: 104543, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33957570

RESUMEN

This study evaluated the effect of distinct surface treatments on the fatigue behavior (biaxial flexural fatigue testing) and surface characteristics (topography and roughness) of a 5% mol yttria partially stabilized zirconia ceramic (5Y-PSZ). Disc-shaped specimens of 5Y-PSZ (IPS e.max ZirCAD MT Multi) were manufactured (ISO 6872-2015) and allocated into six groups (n = 15) considering the following surface treatments: Ctrl - no-treatment; GLZ - low-fusing porcelain glaze application; SNF - 5 nm SiO2 nanofilm; AlOx - aluminum oxide particle air-abrasion; SiC - silica-coated aluminum oxide particles (silica-coating); and 7%Si - 7% silica-coated aluminum oxide particles (silica-coating). The biaxial flexural fatigue tests were performed by the step-stress method (20Hz for 10,000 cycles) with a step increment of 50N starting at 100N and proceeding until failure detection. The samples were tested with the treated surface facing down (tensile stress side). Topography, fractography, roughness, and phase content assessments of treated specimens were performed. GLZ group presented the highest fatigue behavior, while AlOx presented the lowest performance, and was only similar to SiC and 7%Si. Ctrl and SNF presented intermediary fatigue behavior, and were also similar to SiC and 7%Si. GLZ promoted a rougher surface, Ctrl and SNF had the lowest roughness, while the air-abrasion groups presented intermediary roughness. No m-phase content was detected (only t and c phases were detected). In conclusion, the application of a thin-layer of low-fusing porcelain glaze, the deposition of silica nanofilms and the air-abrasion with silica-coated alumina particles had no detrimental effect on the fatigue behavior of the 5Y-PSZ, while the air-abrasion with alumina particles damaged the fatigue outcomes.


Asunto(s)
Dióxido de Silicio , Itrio , Óxido de Aluminio , Cerámica , Análisis del Estrés Dental , Ensayo de Materiales , Propiedades de Superficie , Circonio
4.
Eur J Med Chem ; 209: 112859, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33010635

RESUMEN

Tuberculosis (TB) is one of the most fatal diseases and is responsible for the infection of millions of people around the world. Most recently, scientific frontiers have been engaged to develop new drugs that can overcome drug-resistant TB. Following this direction, using a designed scaffold based on the combination of two separate pharmacophoric groups, a series of menadione-derived selenoesters was developed with good yields. All products were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv and attractive results were observed, especially for the compounds 8a, 8c and 8f (MICs 2.1, 8.0 and 8.1 µM, respectively). In addition, 8a, 8c and 8f demonstrated potent in vitro activity against multidrug-resistant clinical isolates (CDCT-16 and CDCT-27) with promising MIC values ranging from 0.8 to 3.1 µM. Importantly, compounds 8a and 8c were found to be non-toxic against the Vero cell line. The SI value of 8a (>23.8) was found to be comparable to that of isoniazid (>22.7), which suggests the possibility of carrying out advanced studies on this derivative. Therefore, these menadione-derived selenoesters obtained as hybrid compounds represent promising new anti-tubercular agents to overcome TB multidrug resistance.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Selenio/farmacología , Vitamina K 3/farmacología , Animales , Antituberculosos/síntesis química , Antituberculosos/química , Chlorocebus aethiops , Humanos , Modelos Moleculares , Selenio/química , Tuberculosis/tratamiento farmacológico , Células Vero , Vitamina K 3/análogos & derivados , Vitamina K 3/síntesis química
5.
Regul Toxicol Pharmacol ; 111: 104553, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31843592

RESUMEN

New effective compounds to treat tuberculosis are urgently needed. IQG-607 is an orally active anti-tuberculosis drug candidate, with promising preliminary safety profile and anti-mycobacterial activity in both in vitro and in vivo models of tuberculosis infection. Here, we evaluated the mutagenic and genotoxic effects of IQG-607, and its interactions with CYP450 isoforms. Moreover, we describe for the first time a combination study of IQG-607 in Mycobacterium tuberculosis-infected mice. Importantly, IQG-607 had additive effects when combined with the first-line anti-tuberculosis drugs rifampin and pyrazinamide in mice. IQG-607 presented weak to moderate inhibitory potential against CYP450 isoforms 3A4, 1A2, 2C9, 2C19, 2D6, and 2E1. The Salmonella mutagenicity test revealed that IQG-607 induced base pair substitution mutations in the strains TA100 and TA1535. However, in the presence of human metabolic S9 fraction, no mutagenic effect was detected in any strain. Additionally, IQG-607 did not increase micronucleus frequencies in mice, at any dose tested, 25, 100, or 250 mg/kg. The favorable activity in combination with first-line drugs and mild to moderate toxic events described in this study suggest that IQG-607 represents a candidate for clinical development.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Compuestos Ferrosos/efectos adversos , Compuestos Ferrosos/farmacología , Isoniazida/análogos & derivados , Mycobacterium tuberculosis/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Aberraciones Cromosómicas , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Quimioterapia Combinada , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/efectos adversos , Compuestos Ferrosos/administración & dosificación , Isoniazida/administración & dosificación , Isoniazida/efectos adversos , Isoniazida/farmacología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Pruebas de Mutagenicidad , Mycobacterium tuberculosis/genética , Salmonella typhimurium/genética , Tuberculosis/microbiología
6.
J Inorg Biochem ; 179: 71-81, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29175704

RESUMEN

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite. A redox-mediated activation of isoniazid using an iron metal complex was previously proposed as a strategy to overcome isoniazid resistance due to KatG mutations. Here, we have prepared a series of iron metal complexes with isoniazid and analogues, containing alkyl substituents at the hydrazide moiety, and also with pyrazinamide derivatives. These complexes were activated by H2O2 and studied by ESR and LC-MS. For the first time, the formation of the oxidized INH-NAD adduct from the pentacyano(isoniazid)ferrate(II) complex was detected by LC-MS, supporting a redox-mediated activation, for which a mechanistic proposition is reported. ESR data showed all alkylated hydrazides, in contrast to non-substituted hydrazides, only generated alkyl-based radicals. The structural modifications did not improve minimal inhibitory concentration (MIC) against MTB in comparison to isoniazid iron complex, providing support to isonicotinoyl radical formation as a requirement for activity. Nonetheless, the pyrazinoic acid hydrazide iron complex showed redox-mediated activation using H2O2 with generation of a pyrazinoyl radical intermediate and production of pyrazinoic acid, which is in fact the active metabolite of pyrazinamide prodrug. Thereby, this strategy can also unveil new opportunities for activation of this type of drug.


Asunto(s)
Antituberculosos/farmacología , Complejos de Coordinación/farmacología , Compuestos Ferrosos/farmacología , Isoniazida/análogos & derivados , Isoniazida/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/química , Isoniazida/síntesis química , Isoniazida/química , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Mycobacterium tuberculosis/efectos de los fármacos , Oxidación-Reducción
7.
Regul Toxicol Pharmacol ; 90: 78-86, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28838610

RESUMEN

IQG-607 is an anti-tuberculosis drug candidate, with a promising safety and efficacy profile in models of tuberculosis infection both in vitro and in vivo. Here, we evaluated the safety and the possible toxic effects of IQG-607 after acute and 90-day repeated administrations in minipigs. Single oral administration of IQG-607 (220 mg/kg) to female and male minipigs did not result in any morbidity or mortality. No gross lesions were observed in the minipigs at necropsy. Repeated administration of IQG 607 (65, 30, or 15 mg/kg), given orally, for 90 days, in both male and female animals did not cause any mortality and no significant body mass alteration. Diarrhea and alopecia were the clinical signs observed in animals dosed with IQG-607 for 90 days. Long-term treatment with IQG-607 did not induce evident alterations of blood cell counts or any hematological parameters. Importantly, the repeated schedule of administration of IQG-607 resulted in increased cholesterol levels, increased glucose levels, decrease in the globulin levels, and increased creatinine levels over the time. Most necropsy and histopathological alterations of the organs from IQG-607-treated groups were also observed for the untreated group. In addition, pharmacokinetic parameters were evaluated. IQG-607 represents a potential candidate molecule for anti-tuberculosis drug development programs. Its promising in vivo activity and mild to moderate toxic events detected in this study suggest that IQG-607 represents a candidate for clinical development.


Asunto(s)
Alopecia/inducido químicamente , Antituberculosos/toxicidad , Diarrea/inducido químicamente , Compuestos Ferrosos/toxicidad , Isoniazida/análogos & derivados , Administración Oral , Animales , Antituberculosos/farmacocinética , Evaluación Preclínica de Medicamentos , Femenino , Compuestos Ferrosos/farmacocinética , Isoniazida/farmacocinética , Isoniazida/toxicidad , Masculino , Modelos Animales , Porcinos , Porcinos Enanos , Factores de Tiempo , Pruebas de Toxicidad/métodos
8.
Neuropharmacology ; 73: 261-73, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23791558

RESUMEN

Pyrazole compounds are an intriguing class of compounds with potential analgesic activity; however, their mechanism of action remains unknown. Thus, the goal of this study was to explore the antinociceptive potential, safety and mechanism of action of novel 1-pyrazole methyl ester derivatives, which were designed by molecular simplification, using in vivo and in vitro methods in mice. First, tree 1-pyrazole methyl ester derivatives (DMPE, MPFE, and MPCIE) were tested in the capsaicin test and all presented antinociceptive effect; however the MPClE (methyl 5-trichloromethyl-3-methyl-1H-pyrazole-1-carboxylate) was the most effective. Thus, we selected this compound to assess the effects and mechanisms in subsequent pain models. MPCIE produced antinociception when administered by oral, intraperitoneal, intrathecal and intraplantar routes and was effective in the capsaicin and the acetic acid-induced nociception tests. Moreover, this compound reduced the hyperalgesia in diverse clinically-relevant pain models, including postoperative, inflammatory, and neuropathic nociception in mice. The antinociception produced by orally administered MPClE was mediated by κ-opioid receptors, since these effects were prevented by systemically pre-treatment with naloxone and the κ-opioid receptor antagonist nor-binaltorphimine. Moreover, MPCIE prevented binding of the κ-opioid ligand [(3)H]-CI-977 in vitro (IC50 of 0.68 (0.32-1.4) µM), but not the TRPV1 ([(3)H]-resiniferatoxin) or the α2-adrenoreceptor ([(3)H]-idazoxan) binding. Regarding the drug-induced side effects, oral administration of MPClE did not produce sedation, constipation or motor impairment at its active dose. In addition, MPCIE was readily absorbed after oral administration. Taken together, these results demonstrate that MPClE is a novel, potent, orally active and safe analgesic drug that targets κ-opioid receptors.


Asunto(s)
Analgésicos/farmacología , Pirazoles/farmacología , Receptores Opioides kappa/agonistas , Antagonistas de Receptores Adrenérgicos alfa 2 , Analgésicos/administración & dosificación , Analgésicos/antagonistas & inhibidores , Analgésicos/química , Animales , Benzofuranos , Diterpenos , Vías de Administración de Medicamentos , Evaluación Preclínica de Medicamentos , Idazoxan , Masculino , Ratones , Estructura Molecular , Naloxona/farmacología , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Dimensión del Dolor , Pirazoles/administración & dosificación , Pirazoles/antagonistas & inhibidores , Pirazoles/química , Pirrolidinas , Ensayo de Unión Radioligante , Receptores Opioides kappa/antagonistas & inhibidores , Canales Catiónicos TRPV/efectos de los fármacos , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA