Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
FEBS Lett ; 594(3): 424-438, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31605637

RESUMEN

NAD(P)H:quinone oxidoreductase 1 (NQO1) is a human FAD-dependent enzyme that plays a crucial role in the antioxidant defense system. A naturally occurring single-nucleotide polymorphism (NQO1*2) in the NQO1 gene leads to an amino acid substitution (P187S), which severely compromises the activity and stability of the enzyme. The NQO1*2 genotype has been linked to a higher risk for several types of cancer and poor survival rate after anthracycline-based chemotherapy. In this study, we show that a small molecular chaperone (N-(2-bromophenyl)pyrrolidine-1-sulfonamide) repopulates the native wild-type conformation. As a consequence of the stabilizing effect, the enzymatic activity of the P187S variant protein is strongly improved in the presence of the molecular chaperone in vitro.


Asunto(s)
Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neoplasias/genética , Secuencia de Aminoácidos , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Ligandos , Simulación del Acoplamiento Molecular , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/química , Conformación Proteica
2.
Artículo en Inglés | MEDLINE | ID: mdl-30348661

RESUMEN

Paracoccidioidomycosis (PCM), caused by Paracoccidioides, is a systemic mycosis with granulomatous character and a restricted therapeutic arsenal. The aim of this work was to search for new alternatives to treat largely neglected tropical mycosis, such as PCM. In this context, the enzymes of the shikimate pathway constitute excellent drug targets for conferring selective toxicity because this pathway is absent in humans but essential for the fungus. In this work, we have used a homology model of the chorismate synthase (EC 4.2.3.5) from Paracoccidioides brasiliensis (PbCS) and performed a combination of virtual screening and molecular dynamics testing to identify new potential inhibitors. The best hit, CP1, successfully adhered to pharmacological criteria (adsorption, distribution, metabolism, excretion, and toxicity) and was therefore used in in vitro experiments. Here we demonstrate that CP1 binds with a dissociation constant of 64 ± 1 µM to recombinant chorismate synthase from P. brasiliensis and inhibits enzymatic activity, with a 50% inhibitory concentration (IC50) of 47 ± 5 µM. As expected, CP1 showed no toxicity in three cell lines. On the other hand, CP1 reduced the fungal burden in lungs from treated mice, similar to itraconazole. In addition, histopathological analysis showed that animals treated with CP1 displayed less lung tissue infiltration, fewer yeast cells, and large areas with preserved architecture. Therefore, CP1 was able to control PCM in mice with a lower inflammatory response and is thus a promising candidate and lead structure for the development of drugs useful in PCM treatment.


Asunto(s)
Antifúngicos/farmacología , Descubrimiento de Drogas/métodos , Paracoccidioides/efectos de los fármacos , Paracoccidioidomicosis/tratamiento farmacológico , Liasas de Fósforo-Oxígeno/antagonistas & inhibidores , Quinolinas/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Itraconazol/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Simulación de Dinámica Molecular , Paracoccidioides/clasificación , Paracoccidioides/aislamiento & purificación , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/microbiología , Análisis de Secuencia de Proteína
3.
FEBS J ; 282(16): 3060-74, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25619330

RESUMEN

UNLABELLED: The ability of flavoenzymes to reduce dioxygen varies greatly, and is controlled by the protein environment, which may cause either a rapid reaction (oxidases) or a sluggish reaction (dehydrogenases). Previously, a 'gatekeeper' amino acid residue was identified that controls the reactivity to dioxygen in proteins from the vanillyl alcohol oxidase superfamily of flavoenzymes. We have identified an alternative gatekeeper residue that similarly controls dioxygen reactivity in the grass pollen allergen Phl p 4, a member of this superfamily that has glucose dehydrogenase activity and the highest redox potential measured in a flavoenzyme. A substitution at the alternative gatekeeper site (I153V) transformed the enzyme into an efficient oxidase by increasing dioxygen reactivity by a factor of 60,000. An inverse exchange (V169I) in the structurally related berberine bridge enzyme (BBE) decreased its dioxygen reactivity by a factor of 500. Structural and biochemical characterization of these and additional variants showed that our model enzymes possess a cavity that binds an anion and resembles the 'oxyanion hole' in the proximity of the flavin ring. We showed also that steric control of access to this site is the most important parameter affecting dioxygen reactivity in BBE-like enzymes. Analysis of flavin-dependent oxidases from other superfamilies revealed similar structural features, suggesting that dioxygen reactivity may be governed by a common mechanistic principle. DATABASE: Structural data are available in PDB database under the accession numbers 4PVE, 4PVH, 4PVJ, 4PVK, 4PWB, 4PWC and 4PZF.


Asunto(s)
Oxigenasas/química , Oxigenasas/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Alérgenos/química , Alérgenos/genética , Alérgenos/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico/genética , Cristalografía por Rayos X , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Oxígeno/metabolismo , Oxigenasas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/enzimología , Poaceae/genética , Poaceae/inmunología , Polen/enzimología , Polen/genética , Polen/inmunología , Ingeniería de Proteínas , Homología de Secuencia de Aminoácido
4.
FEBS J ; 281(20): 4691-4704, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25143260

RESUMEN

Human NAD(P)H: quinone oxidoreductase 1 (NQO1) is essential for the antioxidant defense system, stabilization of tumor suppressors (e.g. p53, p33, and p73), and activation of quinone-based chemotherapeutics. Overexpression of NQO1 in many solid tumors, coupled with its ability to convert quinone-based chemotherapeutics into potent cytotoxic compounds, have made it a very attractive target for anticancer drugs. A naturally occurring single-nucleotide polymorphism (C609T) leading to an amino acid exchange (P187S) has been implicated in the development of various cancers and poor survival rates following anthracyclin-based adjuvant chemotherapy. Despite its importance for cancer prediction and therapy, the exact molecular basis for the loss of function in NQO1 P187S is currently unknown. Therefore, we solved the crystal structure of NQO1 P187S. Surprisingly, this structure is almost identical to NQO1. Employing a combination of NMR spectroscopy and limited proteolysis experiments, we demonstrated that the single amino acid exchange destabilized interactions between the core and C-terminus, leading to depopulation of the native structure in solution. This collapse of the native structure diminished cofactor affinity and led to a less competent FAD-binding pocket, thus severely compromising the catalytic capacity of the variant protein. Hence, our findings provide a rationale for the loss of function in NQO1 P187S with a frequently occurring single-nucleotide polymorphism. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 4cet (P187S variant with dicoumarol) and 4cf6 (P187S variant with Cibacron blue). STRUCTURED DIGITAL ABSTRACT: NQO1 P187S and NQO1 P187S bind by nuclear magnetic resonance (View interaction) NQO1 P187S and NQO1 P187S bind by x-ray crystallography (1, 2) NQO1 and NQO1 bind by molecular sieving (1, 2).


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona)/química , Polimorfismo Genético/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Estabilidad de Enzimas , Humanos , Datos de Secuencia Molecular , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Planta ; 233(6): 1185-97, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21327819

RESUMEN

Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis. For the berberine biosynthetic pathway, the identification of the dehydrogenase gene is the last remaining uncharacterized step in the elucidation of the biosynthesis at the gene level. An enzyme able to catalyze these reactions, (S)-tetrahydroprotoberberine oxidase (STOX, EC 1.3.3.8), was originally purified in the 1980s from suspension cells of Berberis wilsoniae and identified as a flavoprotein (Amann et al. 1984). We report enzymatic activity from recombinant STOX expressed in Spodoptera frugiperda Sf9 insect cells. The coding sequence was derived successively from peptide sequences of purified STOX protein. Furthermore, a recombinant oxidase with protoberberine dehydrogenase activity was obtained from a cDNA library of Argemone mexicana, a traditional medicinal plant that contains protoberberine alkaloids. The relationship of the two enzymes is discussed regarding their enzymatic activity, phylogeny and the alkaloid occurrence in the plants. Potential substrate binding and STOX-specific amino acid residues were identified based on sequence analysis and homology modeling.


Asunto(s)
Argemone/enzimología , Berberis/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/biosíntesis , Secuencia de Aminoácidos , Animales , Argemone/genética , Argemone/metabolismo , Secuencia de Bases , Alcaloides de Berberina/metabolismo , Berberis/genética , Berberis/metabolismo , Activación Enzimática , Flavoproteínas/metabolismo , Regulación de la Expresión Génica de las Plantas , Insectos/enzimología , Insectos/genética , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Filogenia , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Homología de Secuencia , Sesquiterpenos/metabolismo , Transformación Genética , Fitoalexinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA