Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vis Exp ; (168)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33645563

RESUMEN

Within the last ten years, advances in genetically encoded calcium indicators (GECIs) have promoted a revolution in in vivo functional imaging. Using calcium as a proxy for neuronal activity, these techniques provide a way to monitor the responses of individual cells within large neuronal ensembles to a variety of stimuli in real time. We, and others, have applied these techniques to image the responses of individual geniculate ganglion neurons to taste stimuli applied to the tongues of live anesthetized mice. The geniculate ganglion is comprised of the cell bodies of gustatory neurons innervating the anterior tongue and palate as well as some somatosensory neurons innervating the pinna of the ear. Imaging the taste-evoked responses of individual geniculate ganglion neurons with GCaMP has provided important information about the tuning profiles of these neurons in wild-type mice as well as a way to detect peripheral taste miswiring phenotypes in genetically manipulated mice. Here we demonstrate the surgical procedure to expose the geniculate ganglion, GCaMP fluorescence image acquisition, initial steps for data analysis, and troubleshooting. This technique can be used with transgenically encoded GCaMP, or with AAV-mediated GCaMP expression, and can be modified to image particular genetic subsets of interest (i.e., Cre-mediated GCaMP expression). Overall, in vivo calcium imaging of geniculate ganglion neurons is a powerful technique for monitoring the activity of peripheral gustatory neurons and provides complementary information to more traditional whole-nerve chorda tympani recordings or taste behavior assays.


Asunto(s)
Calcio/metabolismo , Ganglio Geniculado/fisiología , Neuronas/fisiología , Gusto/fisiología , Anestesia , Animales , Ganglio Geniculado/cirugía , Inmovilización , Ratones , Estimulación Física , Papilas Gustativas/fisiología , Traqueotomía
2.
Nature ; 445(7127): 541-5, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17237762

RESUMEN

The nervous system senses peripheral damage through nociceptive neurons that transmit a pain signal. TRPA1 is a member of the Transient Receptor Potential (TRP) family of ion channels and is expressed in nociceptive neurons. TRPA1 is activated by a variety of noxious stimuli, including cold temperatures, pungent natural compounds, and environmental irritants. How such diverse stimuli activate TRPA1 is not known. We observed that most compounds known to activate TRPA1 are able to covalently bind cysteine residues. Here we use click chemistry to show that derivatives of two such compounds, mustard oil and cinnamaldehyde, covalently bind mouse TRPA1. Structurally unrelated cysteine-modifying agents such as iodoacetamide (IA) and (2-aminoethyl)methanethiosulphonate (MTSEA) also bind and activate TRPA1. We identified by mass spectrometry fourteen cytosolic TRPA1 cysteines labelled by IA, three of which are required for normal channel function. In excised patches, reactive compounds activated TRPA1 currents that were maintained at least 10 min after washout of the compound in calcium-free solutions. Finally, activation of TRPA1 by disulphide-bond-forming MTSEA is blocked by the reducing agent dithiothreitol (DTT). Collectively, our data indicate that covalent modification of reactive cysteines within TRPA1 can cause channel activation, rapidly signalling potential tissue damage through the pain pathway.


Asunto(s)
Cisteína/metabolismo , Disulfuros/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Noxas/farmacología , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/metabolismo , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Acroleína/farmacología , Animales , Cisteína/química , Disulfuros/química , Ditiotreitol/farmacología , Conductividad Eléctrica , Metanosulfonato de Etilo/análogos & derivados , Metanosulfonato de Etilo/química , Metanosulfonato de Etilo/metabolismo , Metanosulfonato de Etilo/farmacología , Humanos , Ratones , Planta de la Mostaza/química , Planta de la Mostaza/metabolismo , Noxas/química , Noxas/metabolismo , Dolor/inducido químicamente , Dolor/fisiopatología , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología , Canales de Potencial de Receptor Transitorio/química
3.
Curr Biol ; 15(10): 929-34, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15916949

RESUMEN

Garlic's pungent flavor has made it a popular ingredient in cuisines around the world and throughout history. Garlic's health benefits have been elevated from folklore to clinical study. Although there is some controversy as to the efficacy of garlic, garlic products are one of the most popular herbal supplements in the U.S. Chemically complex, garlic contains different assortments of sulfur compounds depending on whether the cloves are intact, crushed, cooked, or raw. Raw garlic, when cut and placed on the tongue or lips, elicits painful burning and prickling sensations through unknown mechanisms. Here, we show that raw but not baked garlic activates TRPA1 and TRPV1, two temperature-activated ion channels that belong to the transient receptor potential (TRP) family. These thermoTRPs are present in the pain-sensing neurons that innervate the mouth. We further show that allicin, an unstable component of fresh garlic, is the chemical responsible for TRPA1 and TRPV1 activation and is therefore likely to cause garlic's pungency.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Ajo/química , Canales Iónicos/metabolismo , Neuronas/efectos de los fármacos , Ácidos Sulfínicos/farmacología , Animales , Ancirinas , Células CHO , Canales de Calcio/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Disulfuros , Relación Dosis-Respuesta a Droga , Electrofisiología , Fluorometría , Espectroscopía de Resonancia Magnética , Neuronas/metabolismo , Extractos Vegetales , Ratas , Ácidos Sulfínicos/metabolismo , Canal Catiónico TRPA1 , Canales Catiónicos TRPC , Canales Catiónicos TRPV
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA