Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 40(20): 9801-9814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34121622

RESUMEN

Combretaceae are reported in the literature for presenting neuroprotective and anxiolytic effects in animal models. Combretum lanceolatum Pohl. has few scientific reports on its pharmacological effects. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of the ethanol extract from the leaves of C. lanceolatum Pohl. (EtFoCl) and its possible mechanism of GABAergic action in adult zebrafish. EtFoCl was subjected to determination of the total phenol concentration, identification of phytochemical flavonoids by HPLC and in vitro antioxidant activity test, open field test and 96-hour acute toxicity in zebrafish. Anxiolytic doses were tested for pentylenetetrazole-induced seizures in adult zebrafish. To study the mechanisms of action, molecular docking simulations were performed between the main phytochemicals and the GABAA receptor (anxiolytic activity) and carbonic anhydrase II (anticonvulsant). The non-toxic doses that caused motor impairment were assessed in acute and chronic anxiety using the light and dark test. EtFoCl had altered the animals' locomotion, presenting an effect similar to the anxiolytic and anticonvulsant. These effects were prevented with flumazenil (GABAA antagonist). The phytochemicals homoorientin and quercetin-3-O-galactoside coupling in a region close to that of the inhibitor diazepam (GABAA receptor). Regarding the anticonvulsant mechanism, Homoorientina and Isovitexina were identified as the most favorable for the complex form with the carbonic anhydrase enzyme. C. lanceolatum has pharmacological potential for the treatment of acute and chronic anxiety and seizures, which can be partially explained by an interaction with the GABAA receptor.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Ansiolíticos , Combretum , Animales , Ansiolíticos/efectos adversos , Pez Cebra , Receptores de GABA-A , Anticonvulsivantes/farmacología , Simulación del Acoplamiento Molecular , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Ansiedad/tratamiento farmacológico , Extractos Vegetales/farmacología
2.
Phytomedicine ; 55: 293-301, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30293859

RESUMEN

BACKGROUND: Vanillosmopsis arborea Baker has recognized economic value owing to the high content of (-)-α-bisabolol (BISA) in the essential oil of its stem (EOVA). The antinociceptive effect of EVOA has already been demonstrated, and ß-cyclodextrin (ßCD) is known to improve the analgesic effect of various substances. PURPOSE: Thus, we aimed to evaluate the orofacial antinociceptive effect of a complex containing EOVA-ßCD in rodents. METHODS: EOVA was obtained by simple hydrodistillation, and the essential oil was complexed with ßCD. The animals (n = 6/group) were treated orally with EOVA-ßCD (10 or 50 mg/kg), or vehicle (control), and subjected to cutaneous orofacial nociception (formalin, capsaicin, acidic saline or glutamate), corneal (hypertonic saline) or temporomandibular (formalin) tests. The expression of FOS protein was analyzed in the spinal cord. Molecular docking was performed using the 5-HT3 and M2 receptors and BISA. RESULTS: The oral administration of EOVA-ßCD reduced nociceptive behaviour. Moreover, EOVA-ßCD decreased FOS expression. The molecular docking study indicates that BISA interacts with 5-HT3 and M2 receptors, indicating the potential mechanism of action of the tested compound. CONCLUSIONS: Our results indicate that EOVA-ßCD possesses orofacial antinociceptive effect, indicating that this complex can be used in analgesic drug development.


Asunto(s)
Analgésicos/uso terapéutico , Dolor Facial/tratamiento farmacológico , Nocicepción/efectos de los fármacos , Aceites Volátiles/uso terapéutico , Extractos Vegetales/uso terapéutico , Sesquiterpenos/uso terapéutico , beta-Ciclodextrinas/uso terapéutico , Analgésicos/química , Analgésicos/farmacología , Animales , Asteraceae/química , Masculino , Sesquiterpenos Monocíclicos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tallos de la Planta/química , Roedores , Sesquiterpenos/química , Sesquiterpenos/farmacología , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología
3.
Biomed Pharmacother ; 108: 408-416, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30236850

RESUMEN

Neem fruit (Azadirachta indica A. Juss.) are popularly used to treat infections, diarrhea, fever, bronchitis, skin diseases, infected burns and hypertension. Although the antinociceptive and anti-inflammatory potential of A. indica has already been investigated in experimental models of pain and inflammation in mice, the current research is the first to report the evaluation of the capacity of A. indica fruit ethanolic extract (EtFrNeem) in acute pain attenuation using the adult zebrafish (Danio rerio) as an alternative model to the use in rodents. EtFrNeem was submitted to antioxidant action, preliminary chemical prospecting, FT-IR and determination of phenol and flavonoid content tests. Subsequently, EtFrNeem was tested for acute nociception and abdominal inflammation, locomotor activity, and acute toxicity in adult zebrafish. Possible neuromodulation mechanisms were also evaluated. EtFrNeem showed low antioxidant activity, but was shown to be rich in flavonoids. EtFrNeem showed no anti-inflammatory action, did not alter the locomotor system, and it was not toxic. However, EtFrNeem significantly reduced the nociceptive behavior induced by formalin, glutamate and acidic saline, when compared to the control group. These effects of EtFrNeem were significantly similar to those of morphine, used as a positive control. The antinociceptive effect of EtFrNeem was inhibited by naloxone, ketamine and amiloride. EtFrNeem has the pharmacological potential for acute pain treatment and this effect is modulated by the opioid system, NMDA receptors and ASICs channels. These results lead us to studies of isolation and characterization of EtFrNeem bioactive principles, using adult zebrafish as an experimental model.


Asunto(s)
Analgésicos Opioides/farmacología , Analgésicos/farmacología , Azadirachta/química , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Frutas/química , Meliaceae/química , Extractos Vegetales/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Etanol , Flavonoides/farmacología , Locomoción/efectos de los fármacos , Morfina/farmacología , Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Pez Cebra
4.
Biomed Pharmacother ; 97: 1575-1585, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29793320

RESUMEN

Mimosa tenuiflora (Willd.) Poiret, popularly known in Brazil as "jurema-preta" is widely used against bronchitis, fever, headache and inflammation. Its antioxidant, anti-inflammatory and antinociceptive potential has already been reported. To assess the orofacial antinociceptive effect of M. tenuiflora, ethanolic extracts of M. tenuiflora (leaves, twigs, barks and roots) were submitted to in vitro tests of antioxidant activity. The extract with the highest antioxidant potential was partitioned and subjected to preliminary chemical prospecting, GC-MS, measurement of phenolic content and cytotoxicity tests of the fraction with the highest antioxidant activity. The nontoxic fraction with the highest antioxidant activity (FATEM) was subjected to tests of acute and chronic orofacial nociception and locomotor activity. The possible mechanisms of neuromodulation were also assessed. The EtOAc fraction, obtained from the ethanolic extract of M. tenuiflora barks, was the one with the highest antioxidant potential and nontoxic (FATEM), and Benzyloxyamine was the major constituent (34.27%). FATEM did not alter the locomotor system of mice and reduced significantly the orofacial nociceptive behavior induced by formalin, glutamate, capsaicin, cinnamaldehyde or acidic saline compared to the control group. FATEM also inhibited formalin- or mustard oil-induced temporomandibular nociception. In addition, it also reduced mustard oil-induced orofacial muscle nociception. However, FATEM did not alter hypertonic saline-induced corneal nociception. Neuropathic nociception was reversed by treatment with FATEM. The antinociceptive effect of FATEM was inhibited by naloxone, L-NAME and glibenclamide. FATEM has pharmacological potential for the treatment of acute and neuropathic orofacial pain and this effect is modulated by the opioid system, nitric oxide and ATP-sensitive potassium channels. These results lead us to studies of isolation and characterization of bioactive principles.


Asunto(s)
Analgésicos/uso terapéutico , Dolor Facial/tratamiento farmacológico , Mimosa/química , Nocicepción , Extractos Vegetales/uso terapéutico , Acroleína/análogos & derivados , Analgésicos/farmacología , Animales , Antioxidantes/metabolismo , Capsaicina , Fraccionamiento Químico , Chlorocebus aethiops , Etanol , Dolor Facial/patología , Ácido Glutámico , Gliburida/farmacología , Gliburida/uso terapéutico , Ratones , Actividad Motora/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , NG-Nitroarginina Metil Éster/uso terapéutico , Naloxona/farmacología , Naloxona/uso terapéutico , Nocicepción/efectos de los fármacos , Fenoles/análisis , Extractos Vegetales/farmacología , Ratas Wistar , Articulación Temporomandibular/efectos de los fármacos , Articulación Temporomandibular/patología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA