RESUMEN
Coffee (Coffea spp.) alkaloids (caffeine and related methylxanthines) and phenolics (caffeic and chlorogenic acids) have recognized pestistatic/pesticidal activity and mediate insect-plant interactions. The present investigation assessed the resistance of 12 coffee genotypes to the leaf miner Leucoptera (= Perileucoptera) coffeella (Guérin-Méneville & Perrottet) (Lepidoptera: Lyonetiidae) and correlated such results with the leaf content of coffee alkaloids and phenolics that probably play a role in the interaction between coffee and this leaf miner. The levels of chlorogenic and caffeic acid, caffeine, and related methylxanthines were measured and quantified in leaf extracts of these genotypes before and 7 d after their infestation by the leaf miner. Some coffee genotypes (Coffea canephora L. and Coffea racemosa Lour. and its hybrids with Coffea arabica L.) exhibited high pesticidal activity (100% mortality) toward the L. coffeella, indicating their antibiosis resistance. However, there was no correlation between this activity and the leaf levels of coffee alkaloids and phenolics. Curiously, infestation by L. coffeella leads to a nearly four-fold decline in the leaf levels of chlorogenic acid, which does not affect this pest species but may affect other generalist species. Indeed, chlorogenic acid sprayed on coffee leaves stimulated locomotory activity of the green scale Coccus viridis (Green) (Hemiptera: Coccidae), thus minimizing their feeding in contrast with the absence of this polyphenol. Therefore, reduction of chlorogenic acid levels in coffee leaves due to leaf miner infestation seems to also favor infestation by generalist insects, such as the green scale.