Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Environ Sci Pollut Res Int ; 30(8): 21990-21999, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36280635

RESUMEN

The pronephros (early-stage kidney) is an important osmoregulatory organ, and the onset of its function occurs relatively early in some teleost fishes. As such, any defects in kidney development and function are likely associated with a decreased ability to osmoregulate. Previous work has shown that early-life stage (ELS) zebrafish (Danio rerio) acutely exposed to Deepwater Horizon (DWH) crude oil exhibit transcriptional changes in key genes involved in pronephros development and function, as well as pronephric morphological defects and whole-animal osmoregulatory impairment. The objective of this study was to examine the acute effects of crude oil exposure during zebrafish ELS on pronephros function by assessing its fluid clearance capacity and glomerular filtration integrity. Following a 72-h exposure to control conditions, 20% or 40% dilutions of high-energy water-accommodated fractions (HEWAF) of DWH crude oil, zebrafish were injected into the common cardinal vein either with fluorescein-labeled (FITC) 70-kDa dextran to assess glomerular filtration integrity or with FITC-inulin to assess pronephric clearance capacity. Fluorescence was quantified after the injections at predetermined time intervals by fluorescence microscopy. The results demonstrated a diminished pronephric fluid clearance capacity and failed glomerular perfusion when larvae were exposed to 40% HEWAF dilutions, whereas only a reduced glomerular filtration selectivity was observed in zebrafish previously exposed to the 20% HEWAF dilution.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Pez Cebra/genética , Petróleo/toxicidad , Riñón/química , Larva , Contaminantes Químicos del Agua/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-35811062

RESUMEN

Crude oil is known to induce developmental defects in teleost fish exposed during early-life stages (ELSs). A recent study has demonstrated that zebrafish (Danio rerio) larvae acutely exposed to Deepwater Horizon (DHW) crude oil showed transcriptional changes in key genes involved in early kidney (pronephros) development and function, which were coupled with pronephric morphological defects. Given the osmoregulatory importance of the kidney, it is unknown whether ELS effects arising from short-term crude exposures result in long-term osmoregulatory defects, particularly within estuarine fishes likely exposed to DWH oil following the spill. To address this knowledge gap, an acute 72 h exposure to red drum (Sciaenops ocellatus) larvae was performed using high-energy water-accommodated fractions (HEWAFs) of DWH weathered oil to analyze transcriptional changes in genes involved in pronephros development and function by quantitative PCR. To test the latent effects of oil exposure on osmoregulation ability, red drum larvae were first exposed to HEWAF for 24 h. Larvae were then reared in clean seawater for two weeks and a 96 h acute osmotic challenge test was performed by exposing the fish to waters with varying salinities. Latent effects of ELS crude oil exposure on osmoregulation were assessed by quantifying survival during the acute osmotic challenge test and analyzing transcriptional changes at 14 dpf. Results demonstrated that ELS crude oil exposure reduced survival of red drum larvae when challenged in hypoosmotic waters and that latent transcriptional changes in some target pronephric genes were evident, indicating that an affected kidney likely contributed to the increased mortality.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Larva , Osmorregulación , Perciformes/fisiología , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
3.
Aquat Toxicol ; 242: 106045, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34871821

RESUMEN

Crude oil has multiple toxic effects in fish, particularly during their early life stages. Recent transcriptomics studies have highlighted a potential effect on cholesterol homeostasis and biosynthesis, but have not investigated effects on steroid hormones, which are biosynthetically downstream metabolites of cholesterol. We exposed zebrafish (Danio rerio) embryos and larvae to 3 concentrations of a high energy water accommodated fraction (HEWAF) of crude oil and measured effects on cholesterol and steroid hormones at 48 and 96 h post fertilization (hpf). HEWAF exposure caused a small decrease in cholesterol at 96 hpf but not 48 hpf. HEWAF-exposed larvae had higher levels of androstenedione, testosterone, estradiol, cortisol, corticosterone, and progesterone at 96 hpf compared to controls, while effects at 48 hpf were more modest or not present. 2-Methoxyestradiol was lower following HEWAF exposure at both time points. Dihydrotestosterone was elevated in one HEWAF concentration at 48 hpf only. Our results suggest that hormone imbalance may be an important toxic effect of oil HEWAF exposure despite no major effect on their biosynthetic precursor cholesterol.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Colesterol , Hormonas , Larva , Petróleo/toxicidad , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Esteroides , Agua , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
4.
Sci Total Environ ; 808: 151988, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34838918

RESUMEN

Crude oil is known to induce developmental defects in teleost fish exposed during early life stages (ELSs). While most studies in recent years have focused on cardiac endpoints, evidence from whole-animal transcriptomic analyses and studies with individual polycyclic aromatic hydrocarbons (PAHs) indicate that the developing kidney (i.e., pronephros) is also at risk. Considering the role of the pronephros in osmoregulation, and the common observance of edema in oil-exposed ELS fish, surprisingly little is known regarding the effects of oil exposure on pronephros development and function. Using zebrafish (Danio rerio) ELSs, we assessed the transcriptional and morphological responses to two dilutions of high-energy water accommodated fractions (HEWAF) of oil from the Deepwater Horizon oil spill using a combination of qPCR and whole-mount in situ hybridization (WM-ISH) of candidate genes involved in pronephros development and function, and immunohistochemistry (WM-IHC). To assess potential functional impacts on the pronephros, three 24 h osmotic challenges (2 hypo-osmotic, 1 near iso-osmotic) were implemented at two developmental time points (48 and 96 h post fertilization; hpf) following exposure to HEWAF. Changes in transcript expression level and location specific to different regions of the pronephros were observed by qPCR and WM-ISH. Further, pronephros morphology was altered in crude oil exposed larvae, characterized by failed glomerulus and neck segment formation, and straightening of the pronephric tubules. The osmotic challenges at 96 hpf greatly exacerbated edema in both HEWAF-exposed groups regardless of osmolarity. By contrast, larvae at 48 hpf exhibited no edema prior to the osmotic challenge, but previous HEWAF exposure elicited a concentration-response increase in edema at hypo-osmotic conditions that appeared to have been largely alleviated under near iso-osmotic conditions. In summary, ELS HEWAF exposure impaired proper pronephros development in zebrafish, which coupled with cardiotoxic effects, most likely reduced or inhibited pronephros fluid clearance capacity and increased edema formation.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Riñón , Larva , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
5.
Environ Toxicol Chem ; 40(4): 1062-1074, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33252787

RESUMEN

There is evidence that the combination of polycyclic aromatic hydrocarbons (PAHs) released in the Deepwater Horizon oil spill impairs the glucocorticoid stress response of vertebrates in the Gulf of Mexico, but the mechanisms are unclear. We hypothesized that inhibition of cortisol release may be due to 1) overstimulation of the hypothalamic-pituitary-inter-renal (HPI) axis, or 2) an inhibition of cortisol biosynthesis through PAH activation of the aryl hydrocarbon receptor (AhR). Using a flow-through system, Gulf toadfish (Opsanus beta) were continuously exposed to control conditions or one of 3 environmentally relevant concentrations of PAHs from Deepwater Horizon oil (∑PAH50 = 0-3 µg L-1 ) for up to 7 d. One group of toadfish was then exposed to a recovery period for up to 7 d. No changes in corticotrophin-releasing factor mRNA expression, adrenocorticotropic hormone (ACTH), or pituitary mass suggested that overstimulation of the HPI axis was not a factor. The AhR activation was measured by an elevation of cytochrome P4501A1 (CYP1A) mRNA expression within the HPI axis in fish exposed to high PAH concentrations; however, CYP1A was no longer induced after 3 d of recovery in any of the tissues. At 7 d of recovery, there was an impairment of cortisol release in response to an additional simulated predator chase that does not appear to be due to changes in the mRNA expression of the kidney steroidogenic pathway proteins steroidogenic acute regulatory protein, cytochrome P450 side chain cleavage, and 11ß-hydroxylase. Future analyses are needed to determine whether the stress response impairment is due to cholesterol availability and/or down-regulation of the melanocortin 2 receptor. Environ Toxicol Chem 2021;40:1062-1074. © 2020 SETAC.


Asunto(s)
Batrachoidiformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Golfo de México , Hidrocortisona , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Environ Toxicol Chem ; 39(12): 2509-2515, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33006780

RESUMEN

In the aquatic environment, ubiquitous natural factors such as ultraviolet light (UV) and dissolved organic carbon (DOC) are likely to influence crude oil toxicity. The present study examined the interactive effects of DOC, UV, and DOC-UV co-exposure on the acute toxicity of Deepwater Horizon crude oil in larval red drum (Sciaenops ocellatus). Although DOC alone did not influence crude oil toxicity, it mildly reduced UV photo-enhanced toxicity. Environ Toxicol Chem 2020;39:2509-2515. © 2020 SETAC.


Asunto(s)
Carbono/farmacología , Compuestos Orgánicos/farmacología , Perciformes/fisiología , Contaminación por Petróleo/análisis , Pruebas de Toxicidad Aguda , Rayos Ultravioleta , Animales , Relación Dosis-Respuesta en la Radiación , Golfo de México , Larva/efectos de los fármacos , Larva/efectos de la radiación , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Agua/química , Contaminantes Químicos del Agua/toxicidad
7.
Artículo en Inglés | MEDLINE | ID: mdl-32777466

RESUMEN

The failure of the swim bladder to inflate during fish development is a common and sensitive response to exposure to petrochemicals. Here, we review potential mechanisms by which petrochemicals or their toxic components (polycyclic aromatic hydrocarbons; PAHs) may affect swim bladder inflation, particularly during early life stages. Surface films formed by oil can cause a physical barrier to primary inflation by air gulping, and are likely important during oil spills. The act of swimming to the surface for primary inflation can be arduous for some species, and may prevent inflation if this behavior is limited by toxic effects on vision or musculature. Some studies have noted altered gene expression in the swim bladder in response to PAHs, and Cytochrome P450 1A (CYP1A) can be induced in swim bladder or rete mirabile tissue, suggesting that PAHs can have direct effects on swim bladder development. Swim bladder inflation failure can also occur secondarily to the failure of other systems; cardiovascular impairment is the best elucidated of these mechanisms, but other mechanisms might include non-inflation as a sequela of disruption to thyroid signaling or cholesterol metabolism. Failed swim bladder inflation has the potential to lead to chronic sublethal effects that are as yet unstudied.


Asunto(s)
Sacos Aéreos/efectos de los fármacos , Peces/crecimiento & desarrollo , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Sacos Aéreos/crecimiento & desarrollo , Sacos Aéreos/patología , Animales , Embrión no Mamífero , Peces/embriología , Peces/fisiología , Organogénesis , Petróleo/envenenamiento , Hidrocarburos Policíclicos Aromáticos/envenenamiento , Natación , Contaminantes Químicos del Agua/toxicidad
8.
Environ Sci Technol ; 53(23): 14001-14009, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31702903

RESUMEN

The understanding of the detection threshold and behavioral response of fishes in response to crude oil is critical to predicting the effects of oil spills on wild fish populations. The Deepwater Horizon oil spill released approximately 4.9 million barrels of crude oil into the northern Gulf of Mexico in 2010, overlapping spatially and temporally with the habitat of many pelagic fish species. Yet, it is unknown whether highly migratory species, such as mahi-mahi (Coryphaena hippurus), might detect and avoid oil contaminated waters. We tested the ability of control and oil-exposed juvenile mahi-mahi (15-45 mm) to avoid two dilutions of crude oil in a two-channel flume. Control fish avoided the higher concentration (27.1 µg/L Σ50PAH), while oil-exposed (24 h, 18.0 µg/L Σ50PAH) conspecifics did not. Electro-olfactogram (EOG) data demonstrated that both control and oil-exposed (24 h, 14.5 µg/L Σ50PAH) juvenile mahi-mahi (27-85 mm) could detect crude oil as an olfactory cue and that oil-exposure did not affect the EOG amplitude or duration in response to oil or other cues. These results show that a brief oil exposure impairs the ability of mahi-mahi to avoid oil and suggests that this alteration likely results from injury to higher order central nervous system processing rather than impaired olfactory physiology.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Reacción de Prevención , Embrión no Mamífero , Golfo de México
9.
Environ Sci Technol ; 53(18): 10993-11001, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31449401

RESUMEN

In fishes, olfactory cues evoke behavioral responses that are crucial to survival; however, the receptors, olfactory sensory neurons, are directly exposed to the environment and are susceptible to damage from aquatic contaminants. In 2010, 4.9 million barrels of crude oil were released into the northern Gulf of Mexico from the Deepwater Horizon disaster, exposing marine organisms to this environmental contaminant. We examined the ability of bicolor damselfish (Stegastes partitus), exposed to the water accommodated fraction (WAF) of crude oil, to respond to chemical alarm cue (CAC) using a two-channel flume. Control bicolor damselfish avoided CAC in the flume choice test, whereas WAF-exposed conspecifics did not. This lack of avoidance persisted following 8 days of control water conditions. We then examined the physiological response to CAC, brine shrimp rinse, bile salt, and amino acid cues using the electro-olfactogram (EOG) technique and found that WAF-exposed bicolor damselfish were less likely to detect CAC as an olfactory cue but showed no difference in EOG amplitude or duration compared to controls. These data indicate that a sublethal WAF exposure directly modifies detection and avoidance of CAC beyond the exposure period and may suggest reduced predator avoidance behavior in oil-exposed fish in the wild.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Golfo de México , Olfato
10.
Environ Sci Technol ; 53(16): 9895-9904, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31343865

RESUMEN

Deepwater Horizon crude oil is comprised of polycyclic aromatic hydrocarbons that cause a number of cardiotoxic effects in marine fishes across all levels of biological organization and at different life stages. Although cardiotoxic impacts have been widely reported, the mechanisms underlying these impairments in adult fish remain understudied. In this study, we examined the impacts of crude oil on cardiomyocyte contractility and electrophysiological parameters in freshly isolated ventricular cardiomyocytes from adult mahi-mahi (Coryphaena hippurus). Cardiomyocytes directly exposed to oil exhibited reduced contractility over a range of environmentally relevant concentrations (2.8-12.9 µg l-1∑PAH). This reduction in contractility was most pronounced at higher stimulation frequencies, corresponding to the upper limits of previously measured in situ mahi heart rates. To better understand the mechanisms underlying impaired contractile function, electrophysiological studies were performed, which revealed oil exposure prolonged cardiomyocyte action potentials and disrupted potassium cycling (9.9-30.4 µg l-1∑PAH). This study is the first to measure cellular contractility in oil-exposed cardiomyocytes from a pelagic fish. Results from this study contribute to previously observed impairments to heart function and whole-animal exercise performance in mahi, underscoring the advantages of using an integrative approach in examining mechanisms of oil-induced cardiotoxicity in marine fish.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales
11.
Mar Environ Res ; 139: 129-135, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29778443

RESUMEN

This study examined potential interactive effects of co-exposure to Deepwater Horizon (DWH) crude oil (∼30 µg L-1 ΣPAHs) for 24 h and either hypoxia (2.5 mg O2 L-1; 40% O2 saturation) or elevated temperature (30 °C) on the swimming performance of juvenile mahi-mahi (Coryphaena hippurus). Additionally, effects of shorter duration exposures to equal or higher doses of oil alone either prior to swimming or during the actual swim trial itself were examined. Only exposure to hypoxia alone or combined with crude oil elicited significant decreases in critical swimming speed (Ucrit) and to a similar extent (∼20%). In contrast, results indicate that elevated temperature might ameliorate some effects of oil exposure on swimming performance and that effects of shorter duration exposures are either reduced or delayed.


Asunto(s)
Perciformes/fisiología , Contaminación por Petróleo , Petróleo/toxicidad , Temperatura , Contaminantes Químicos del Agua/toxicidad , Animales , Embrión no Mamífero , Monitoreo del Ambiente , Hipoxia , Hidrocarburos Policíclicos Aromáticos/toxicidad , Natación
12.
Sci Rep ; 7: 44546, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295044

RESUMEN

The impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses. By high throughput sequencing (HTS), we obtained the first de novo transcriptome of mahi-mahi, with 60,842 assembled transcripts and 30,518 BLAST hits. Among them, 2,345 genes were significantly regulated in 96hpf larvae after exposure to weathered oil. With comparative analysis to a reference-transcriptome-guided approach on gene ontology and tox-pathways, we confirmed the novel approach effective for exploring tox-pathways in non-model species, and also identified a list of co-expressed genes as potential biomarkers which will provide information for the construction of an Adverse Outcome Pathway which could be useful in Ecological Risk Assessments.


Asunto(s)
Larva/efectos de los fármacos , Perciformes/genética , Hidrocarburos Policíclicos Aromáticos/toxicidad , Transcriptoma/genética , Animales , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Larva/genética , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , Alimentos Marinos , Contaminantes Químicos del Agua
13.
Environ Toxicol Chem ; 36(7): 1887-1895, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28128479

RESUMEN

Windows of exposure to a weathered Deepwater Horizon oil sample (slick A) were examined for early life stage mahi-mahi (Coryphaena hippurus) to determine whether there are developmental periods of enhanced sensitivity during the course of a standard 96-h bioassay. Survival was assessed at 96 h following oil exposures ranging from 2 h to 96 h and targeting 3 general periods of development, namely the prehatch phase, the period surrounding hatch, and the posthatch phase. In addition, 3 different oil preparations were used: high- and low-energy water accommodated fractions of oil and very thin surface slicks of oil (∼1 µm). The latter 2 were used to distinguish between effects due to direct contact with the slick itself and the water underlying the slick. Considering the data from all 3 exposure regimes, it was determined that the period near or including hatch was likely the most sensitive. Furthermore, toxicity was not enhanced by direct contact with slick oil. These findings are environmentally relevant given that the concentrations of polycyclic aromatic hydrocarbons eliciting mortality from exposures during the sensitive periods of development were below or near concentrations measured during the active spill phase. Environ Toxicol Chem 2017;36:1887-1895. © 2016 SETAC.


Asunto(s)
Perciformes/crecimiento & desarrollo , Petróleo/análisis , Animales , Bioensayo , Estadios del Ciclo de Vida/efectos de los fármacos , Petróleo/toxicidad , Contaminación por Petróleo , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pruebas de Toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
14.
Aquat Toxicol ; 181: 113-123, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27829195

RESUMEN

The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi.


Asunto(s)
Consumo de Oxígeno/efectos de los fármacos , Perciformes/metabolismo , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Larva/efectos de los fármacos , Larva/metabolismo , Perciformes/crecimiento & desarrollo , Contaminación por Petróleo , Hidrocarburos Policíclicos Aromáticos/análisis , Natación , Temperatura , Contaminantes Químicos del Agua/química
15.
Aquat Toxicol ; 180: 274-281, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27768947

RESUMEN

Exposure to polycyclic aromatic hydrocarbons (PAH) negatively impacts exercise performance in fish species but the physiological modifications that result in this phenotype are poorly understood. Prior studies have shown that embryonic and juvenile mahi-mahi (Coryphaeus hippurus) exposed to PAH exhibit morphological abnormalities, altered cardiac development and reduced swimming performance. It has been suggested that cardiovascular function inhibited by PAH exposure accounts for the compromised exercise performance in fish species. In this study we used in-situ techniques to measure hemodynamic responses of young adult mahi-mahi exposed to PAH for 24h. The data indicate that stroke volume was reduced 44% in mahi-mahi exposed to 9.6±2.7µgl-1 geometric mean PAH (∑PAH) and resulted in a 39% reduction in cardiac output and a 52% reduction in stroke work. Maximal change in pressure over change in time was 28% lower in mahi-mahi exposed to this level of ∑PAH. Mean intraventricular pressures and heart rate were not significantly changed. This study suggests exposure to environmentally relevant PAH concentrations impairs aspects of cardiovascular function in mahi-mahi.


Asunto(s)
Corazón/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Perciformes/fisiología , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Corazón/fisiopatología , Hemodinámica/fisiología , Contaminación por Petróleo/efectos adversos , Hidrocarburos Policíclicos Aromáticos , Pruebas de Toxicidad
16.
Chemosphere ; 162: 261-8, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27505137

RESUMEN

Key differences in the developmental process of pelagic fish embryos, in comparison to embryos of standard test fish species, present challenges to obtaining sufficient control survival needed to successfully perform traditional toxicity testing bioassays. Many of these challenges relate to the change in buoyancy, from positive to negative, of pelagic fish embryos that occurs just prior to hatch. A novel exposure system, the pelagic embryo-larval exposure chamber (PELEC), has been developed to conduct successful bioassays on the early life stages (ELSs; embryos/larvae) of pelagic fish. Using this unique recirculating upwelling system, it was possible to significantly improve control survival in pelagic fish ELS bioassays compared to commonly used static exposure methods. Results demonstrate that control performance of mahi-mahi (Coryphaena hippurus) embryos in the PELEC system, measured as percent survival after 96-hrs, significantly outperformed agitated static exposure and static exposure systems. Similar significant improvements in 72-hr control survival were obtained with yellowfin tuna (Thunnus albacares). The PELEC system was subsequently used to test the effects of photo-induced toxicity of crude oil to mahi-mahi ELSs over the course of 96-hrs. Results indicate a greater than 9-fold increase in toxicity of Deepwater Horizon (DWH) crude oil during co-exposure to ambient sunlight compared to filtered ambient sunlight, revealing the importance of including natural sunlight in 96-hr DWH crude oil bioassays as well as the PELEC system's potential application in ecotoxicological assessments.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Perciformes/crecimiento & desarrollo , Contaminación por Petróleo/efectos adversos , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Embrión no Mamífero/citología , Larva/crecimiento & desarrollo , Pruebas de Toxicidad , Contaminantes Químicos del Agua/química
17.
Environ Sci Technol ; 50(14): 7842-51, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27348429

RESUMEN

The Deepwater Horizon (DWH) oil spill contaminated the spawning habitats for numerous commercially and ecologically important fishes. Exposure to the water accommodated fraction (WAF) of oil from the spill has been shown to cause cardiac toxicity during early developmental stages across fishes. To better understand the molecular events and explore new pathways responsible for toxicity, RNA sequencing was performed in conjunction with physiological and morphological assessments to analyze the time-course (24, 48, and 96 h post fertilization (hpf)) of transcriptional and developmental responses in embryos/larvae of mahi-mahi exposed to WAF of weathered (slick) and source DWH oils. Slick oil exposure induced more pronounced changes in gene expression over time than source oil exposure. Predominant transcriptomic responses included alteration of EIF2 signaling, steroid biosynthesis, ribosome biogenesis and activation of the cytochrome P450 pathway. At 96 hpf, slick oil exposure resulted in significant perturbations in eye development and peripheral nervous system, suggesting novel targets in addition to the heart may be involved in the developmental toxicity of DHW oil. Comparisons of changes of cardiac genes with phenotypic responses were consistent with reduced heart rate and increased pericardial edema in larvae exposed to slick oil but not source oil.


Asunto(s)
Larva , Petróleo/toxicidad , Animales , Perciformes , Contaminación por Petróleo , Contaminantes Químicos del Agua
18.
Environ Toxicol Chem ; 35(10): 2613-2622, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27018209

RESUMEN

The temporal and geographic attributes of the Deepwater Horizon incident in 2010 likely exposed pelagic game fish species, such as mahi-mahi, to crude oil. Although much of the research assessing the effects of the spill has focused on early life stages of fish, studies examining whole-animal physiological responses of adult marine fish species are lacking. Using swim chamber respirometry, the present study demonstrates that acute exposure to a sublethal concentration of the water accommodated fraction of Deepwater Horizon crude oil results in significant swim performance impacts on young adult mahi-mahi, representing the first report of acute sublethal toxicity on adult pelagic fish in the Gulf of Mexico following the spill. At an exposure concentration of 8.4 ± 0.6 µg L-1 sum of 50 selected polycyclic aromatic hydrocarbons (PAHs; mean of geometric means ± standard error of the mean), significant decreases in the critical and optimal swimming speeds of 14% and 10%, respectively (p < 0.05), were observed. In addition, a 20% reduction in the maximum metabolic rate and a 29% reduction in aerobic scope resulted from exposure to this level of ΣPAHs. Using environmentally relevant crude oil exposure concentrations and a commercially and ecologically valuable Gulf of Mexico fish species, the present results provide insight into the effects of the Deepwater Horizon oil spill on adult pelagic fish. Environ Toxicol Chem 2016;35:2613-2622. © 2016 SETAC.


Asunto(s)
Perciformes/fisiología , Contaminación por Petróleo/análisis , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Natación , Contaminantes Químicos del Agua/toxicidad , Animales , Metabolismo Energético/efectos de los fármacos , Monitoreo del Ambiente/métodos , Golfo de México , Perciformes/metabolismo , Natación/fisiología
19.
Sci Total Environ ; 543(Pt A): 644-651, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26613518

RESUMEN

To better understand the impact of the Deepwater Horizon (DWH) incident on commercially and ecologically important pelagic fish species, a mahi-mahi spawning program was developed to assess the effect of embryonic exposure to DWH crude oil with particular emphasis on the effects of weathering and dispersant on the magnitude of toxicity. Acute lethality (96 h LC50) ranged from 45.8 (28.4-63.1) µg l(-1) ΣPAH for wellhead (source) oil to 8.8 (7.4-10.3) µg l(-1) ΣPAH for samples collected from the surface slick, reinforcing previous work that weathered oil is more toxic on a ΣPAH basis. Differences in toxicity appear related to the amount of dissolved 3 ringed PAHs. The dispersant Corexit 9500 did not influence acute lethality of oil preparations. Embryonic oil exposure resulted in cardiotoxicity after 48 h, as evident from pericardial edema and reduced atrial contractility. Whereas pericardial edema appeared to correlate well with acute lethality at 96 h, atrial contractility did not. However, sub-lethal cardiotoxicity may impact long-term performance and survival. Dispersant did not affect the occurrence of pericardial edema; however, there was an apparent reduction in atrial contractility at 48 h of exposure. Pericardial edema at 48 h and lethality at 96 h were equally sensitive endpoints in mahi-mahi.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Monitoreo del Ambiente , Perciformes/fisiología , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Lípidos/química , Perciformes/embriología , Petróleo/análisis , Contaminación por Petróleo/análisis , Contaminación por Petróleo/estadística & datos numéricos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
20.
Sci Rep ; 5: 17326, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26658479

RESUMEN

Crude oils from distinct geological sources worldwide are toxic to developing fish hearts. When oil spills occur in fish spawning habitats, natural resource injury assessments often rely on conventional morphometric analyses of heart form and function. The extent to which visible indicators correspond to molecular markers for cardiovascular stress is unknown for pelagic predators from the Gulf of Mexico. Here we exposed mahi (Coryphaena hippurus) embryos to field-collected crude oil samples from the 2010 Deepwater Horizon disaster. We compared visible heart defects (edema, abnormal looping, reduced contractility) to changes in expression of cardiac-specific genes that are diagnostic of heart failure in humans or associated with loss-of-function zebrafish cardiac mutants. Mahi exposed to crude oil during embryogenesis displayed typical symptoms of cardiogenic syndrome as larvae. Contractility, looping, and circulatory defects were evident, but larval mahi did not exhibit downstream craniofacial and body axis abnormalities. A gradation of oil exposures yielded concentration-responsive changes in morphometric and molecular responses, with relative sensitivity being influenced by age. Our findings suggest that 1) morphometric analyses of cardiac function are more sensitive to proximal effects of crude oil-derived chemicals on the developing heart, and 2) molecular indicators reveal a longer-term adverse shift in cardiogenesis trajectory.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Corazón/efectos de los fármacos , Perciformes , Contaminación por Petróleo , Petróleo/toxicidad , Animales , Biomarcadores , Cardiotoxicidad/genética , Embrión no Mamífero/metabolismo , Exposición a Riesgos Ambientales , Perfilación de la Expresión Génica , Perciformes/embriología , Perciformes/genética , Reproducibilidad de los Resultados , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA