Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 92(4): 670-685, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35748636

RESUMEN

Leptomeningeal and perivenular infiltrates are important contributors to cortical grey matter damage and disease progression in multiple sclerosis (MS). Whereas perivenular inflammation induces vasculocentric lesions, leptomeningeal involvement follows a subpial "surface-in" gradient. To determine whether similar gradient of damage occurs in deep grey matter nuclei, we examined the dorsomedial thalamic nuclei and cerebrospinal fluid (CSF) samples from 41 postmortem secondary progressive MS cases compared with 5 non-neurological controls and 12 controls with other neurological diseases. CSF/ependyma-oriented gradient of reduction in NeuN+ neuron density was present in MS thalamic lesions compared to controls, greatest (26%) in subventricular locations at the ependyma/CSF boundary and least with increasing distance (12% at 10 mm). Concomitant graded reduction in SMI31+ axon density was observed, greatest (38%) at 2 mm from the ependyma/CSF boundary and least at 10 mm (13%). Conversely, gradient of major histocompatibility complex (MHC)-II+ microglia density increased by over 50% at 2 mm at the ependyma/CSF boundary and only by 15% at 10 mm and this gradient inversely correlated with the neuronal (R = -0.91, p < 0.0001) and axonal (R = -0.79, p < 0.0001) thalamic changes. Observed gradients were also detected in normal-appearing thalamus and were associated with rapid/severe disease progression; presence of leptomeningeal tertiary lymphoid-like structures; large subependymal infiltrates, enriched in CD20+ B cells and occasionally containing CXCL13+ CD35+ follicular dendritic cells; and high CSF protein expression of a complex pattern of soluble inflammatory/neurodegeneration factors, including chitinase-3-like-1, TNFR1, parvalbumin, neurofilament-light-chains and TNF. Substantial "ependymal-in" gradient of pathological cell alterations, accompanied by presence of intrathecal inflammation, compartmentalized either in subependymal lymphoid perivascular infiltrates or in CSF, may play a key role in MS progression. SUMMARY FOR SOCIAL MEDIA: Imaging and neuropathological evidences demonstrated the unique feature of "surface-in" gradient of damage in multiple sclerosis (MS) since early pediatric stages, often associated with more severe brain atrophy and disease progression. In particular, increased inflammation in the cerebral meninges has been shown to be strictly associated with an MS-specific gradient of neuronal, astrocyte, and oligodendrocyte loss accompanied by microglial activation in subpial cortical layers, which is not directly related to demyelination. To determine whether a similar gradient of damage occurs in deep grey matter nuclei, we examined the potential neuronal and microglia alterations in the dorsomedial thalamic nuclei from postmortem secondary progressive MS cases in combination with detailed neuropathological characterization of the inflammatory features and protein profiling of paired CSF samples. We observed a substantial "subependymal-in" gradient of neuro-axonal loss and microglia activation in active thalamic lesions of progressive MS cases, in particular in the presence of increased leptomeningeal and cerebrospinal fluid (CSF) inflammation. This altered graded pathology was found associated with more severe and rapid progressive MS and increased inflammatory degree either in large perivascular subependymal infiltrates, enriched in B cells, or within the paired CSF, in particular with elevated levels of a complex pattern of soluble inflammatory and neurodegeneration factors, including chitinase 3-like-1, TNFR1, parvalbumin, neurofilament light-chains and TNF. These data support a key role for chronic, intrathecally compartmentalized inflammation in specific disease endophenotypes. CSF biomarkers, together with advance imaging tools, may therefore help to improve not only the disease diagnosis but also the early identification of specific MS subgroups that would benefit of more personalized treatments. ANN NEUROL 2022;92:670-685.


Asunto(s)
Quitinasas , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Corteza Cerebral/metabolismo , Progresión de la Enfermedad , Epéndimo , Humanos , Inflamación/complicaciones , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/complicaciones , Parvalbúminas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Tálamo/patología
2.
Brain Pathol ; 32(5): e13054, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35132719

RESUMEN

The extent of grey matter demyelination and neurodegeneration in the progressive multiple sclerosis (PMS) brains at post-mortem associates with more severe disease. Regional tissue atrophy, especially affecting the cortical and deep grey matter, including the thalamus, is prognostic for poor outcomes. Microglial and complement activation are important in the pathogenesis and contribute to damaging processes that underlie tissue atrophy in PMS. We investigated the extent of pathology and innate immune activation in the thalamus in comparison to cortical grey and white matter in blocks from 21 cases of PMS and 10 matched controls. Using a digital pathology workflow, we show that the thalamus is invariably affected by demyelination and had a far higher proportion of active inflammatory lesions than forebrain cortical tissue blocks from the same cases. Lesions were larger and more frequent in the medial nuclei near the ventricular margin, whilst neuronal loss was greatest in the lateral thalamic nuclei. The extent of thalamic neuron loss was not associated with thalamic demyelination but correlated with the burden of white matter pathology in other forebrain areas (Spearman r = 0.79, p < 0.0001). Only thalamic neuronal loss, and not that seen in other forebrain cortical areas, correlated with disease duration (Spearman r = -0.58, p = 0.009) and age of death (Spearman r = -0.47, p = 0.045). Immunoreactivity for the complement pattern recognition molecule C1q, and products of complement activation (C4d, Bb and C3b) were elevated in thalamic lesions with an active inflammatory pathology. Complement regulatory protein, C1 inhibitor, was unchanged in expression. We conclude that active inflammatory demyelination, neuronal loss and local complement synthesis and activation in the thalamus, are important to the pathological and clinical disease outcomes of PMS.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Atrofia/patología , Activación de Complemento , Sustancia Gris/patología , Humanos , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/patología , Tálamo/patología
3.
Mult Scler ; 28(4): 550-560, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34378437

RESUMEN

BACKGROUND: The underlying pathogenesis of surface-in grey matter abnormalities in MS, demonstrated by both neuropathology and advanced MRI analyses, is under investigation and it might be related to CSF-mediated mechanism of inflammation and/or damage. OBJECTIVE: To examine the link of CSF inflammatory profile with the damage of three regions early-involved in MS and bordering with CSF: thalamus, hippocampus and cerebellum. METHODS: In this longitudinal, prospective study, we evaluated, in 109 relapsing-remitting MS patients, at diagnosis and after 2-year follow-up, the association between the baseline CSF level of 19 inflammatory mediators and the volume changes of thalamus, hippocampus, cerebellar cortex and control regions (globus pallidus, putamen). RESULTS: The multivariable analysis showed that the CXCL13 and sCD163 CSF levels at baseline were independent predictors of thalamus (Rmodel2=0.80; p < 0.001) and hippocampus (Rmodel2=0.47; p < 0.001) volume change after 2-year follow-up. These molecules, plus CCL25, IFN-γ and fibrinogen, were independent predictors of the cerebellar cortex volume loss (Rmodel2=0.60; p < 0.001). No independent predictors of volume changes of the control regions were found. CONCLUSION: Our results indicate an association between the CSF inflammatory profile and grey matter volume loss of regions anatomically close to CSF boundaries, thus supporting the hypothesis of a surface-in GM damage in MS.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Atrofia/patología , Encéfalo/patología , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple Recurrente-Remitente/patología , Estudios Prospectivos , Tálamo/diagnóstico por imagen , Tálamo/patología
4.
Ann Neurol ; 85(3): 340-351, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30719730

RESUMEN

OBJECTIVE: Central nervous system pathology in multiple sclerosis includes both focal inflammatory perivascular injury and injury to superficial structures, including the subpial region of the cortex, which reportedly exhibits a gradient of damage from the surface inward. We assessed how early in the multiple sclerosis course a "surface-in" process of injury suggesting progressive biology may begin. METHODS: We focused on the thalamus, which notably has both a cerebrospinal fluid (CSF) interface and a white matter interface. Thalamic volume trajectories were assessed in a prospectively followed cohort of children from initial presentation with either multiple sclerosis or monophasic acquired demyelination, and healthy controls. Voxelwise volume changes were calculated using deformation-based morphometry, and analyzed in relation to distance from the CSF interface by mixed effects modeling and semiparametric smoothing methods. RESULTS: Twenty-seven children with multiple sclerosis and 73 children with monophasic demyelination were prospectively followed with yearly brain scans (mean follow-up = 4.6 years, standard deviation = 1.9). A total of 282 healthy children with serial scans were included as controls. Relative to healthy controls, children with multiple sclerosis and children with monophasic demyelination demonstrated volume loss in thalamic regions adjacent to the white matter. However, only children with multiple sclerosis exhibited an additional surface-in gradient of thalamic injury on the ventricular side, which was already notable in the first year of clinical disease (asymptote estimate = 3.01, 95% confidence interval [CI] = 1.44-4.58, p = 0.0002) and worsened over time (asymptote:time estimate = 0.33, 95% CI = 0.12-0.54, p = 0.0021). INTERPRETATION: Our results suggest that a multiple sclerosis disease-specific surface-in process of damage can manifest at the earliest stages of the disease. ANN NEUROL 2019;85:340-351.


Asunto(s)
Esclerosis Múltiple/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Enfermedades Autoinmunes Desmielinizantes SNC/diagnóstico por imagen , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Progresión de la Enfermedad , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/patología , Tamaño de los Órganos , Tálamo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA