Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 806(Pt 4): 150967, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34656603

RESUMEN

Improvement of nutrient use efficiency and limiting trace elements such as arsenic and uranium bioavailability is critical for sustainable agriculture and food safety. Arsenic and uranium possess different properties and mobility in soils, which complicates the effort to reduce their uptake by plants. Here, we postulate that unsaturated soil amended with ferrihydrite nanominerals leads to improved nutrient retention and helps reduce uptake of these geogenic contaminants. Unsaturated soil is primarily oxic and can provide a stable environment for ferrihydrite nanominerals. To demonstrate the utility of ferrihydrite soil amendment, maize was grown in an unsaturated agricultural soil that is known to contain geogenic arsenic and uranium. The soil was maintained at a gravimetric moisture content of 15.1 ± 2.5%, typical of periodically irrigated soils of the US Corn Belt. Synthetic 2-line ferrihydrite was used in low doses as a soil amendment at three levels (0.00% w/w (control), 0.05% w/w and 0.10% w/w). Further, the irrigation water was fortified (~50 µg L-1 each) with elevated arsenic and uranium levels. Plant dry biomass at maturity was ~13.5% higher than that grown in soil not receiving ferrihydrite, indicating positive impact of ferrihydrite on plant growth. Arsenic and uranium concentrations in maize crops (root, shoot and grain combined) were ~ 20% lower in amended soils than that in control soils. Our findings suggest that the addition of low doses of iron nanomineral soil amendment can positively influence rhizosphere geochemical processes, enhancing nutrient plant availability and reduce trace contaminants plant uptake in sprinkler irrigated agroecosystem, which is 55% of total irrigated area in the United States.


Asunto(s)
Arsénico , Contaminantes del Suelo , Uranio , Arsénico/análisis , Compuestos Férricos , Nutrientes , Rizosfera , Suelo , Contaminantes del Suelo/análisis
2.
BMC Microbiol ; 20(1): 354, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203383

RESUMEN

BACKGROUND: Root and stem rot caused by Rhizoctonia solani is a serious fungal disease of sugar beet and dry bean production in Nebraska. Rhizoctonia root rot and crown rot in sugar beet and dry bean have reduced the yield significantly and has also created problems in storage. The objective of this study was to analyze morpho-genetic diversity of 38 Rhizoctonia solani isolates from sugar beet and dry bean fields in western Nebraska collected over 10 years. Morphological features and ISSR-based DNA markers were used to study the morphogenetic diversity. RESULTS: Fungal colonies were morphologically diverse in shapes, aerial hyphae formation, colony, and sclerotia color. Marker analysis using 19 polymorphic ISSR markers showed polymorphic bands ranged from 15 to 28 with molecular weight of 100 bp to 3 kb. Polymorphic loci ranged from 43.26-92.88%. Nei genetic distance within the population ranged from 0.03-0.09 and Shannon diversity index varied from 0.24-0.28. AMOVA analysis based on ΦPT values showed 87% variation within and 13% among the population with statistical significance (p < 0.05). Majority of the isolates from sugar beet showed nearby association within the population. A significant number of isolates showed similarity with isolates of both the crops suggesting their broad pathogenicity. Isolates were grouped into three different clusters in UPGMA based cluster analysis using marker information. Interestingly, there was no geographical correlation among the isolates. Principal component analysis showed randomized distribution of isolates from the same geographical origin. Identities of the isolates were confirmed by both ITS-rDNA sequences and pathogenicity tests. CONCLUSION: Identification and categorization of the pathogen will be helpful in designing integrated disease management guidelines for sugar beet and dry beans of mid western America.


Asunto(s)
Beta vulgaris/microbiología , Phaseolus/microbiología , Enfermedades de las Plantas/microbiología , Rhizoctonia/genética , Análisis por Conglomerados , ADN de Hongos/genética , Marcadores Genéticos , Variación Genética , Estudios Longitudinales , Repeticiones de Microsatélite/genética , Nebraska , Raíces de Plantas/microbiología , Rhizoctonia/clasificación , Rhizoctonia/citología , Rhizoctonia/aislamiento & purificación
3.
PLoS One ; 13(10): e0206350, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30365521

RESUMEN

Digital soil mapping has been widely used to develop statistical models of the relationships between environmental variables and soil attributes. This study aimed at determining and mapping the spatial distribution of the variability in soil chemical properties of the agricultural floodplain lands of the Bara district in Nepal. The study was carried out in 23 Village Development Committees with 12,516 ha total area, in the southern part of the Bara district. A total of 109 surface soil samples (0 to 15 cm depth) were collected and analyzed for pH, organic matter (OM), nitrogen (N), phosphorus (P, expressed as P2O5), potassium (K, expressed as K2O), zinc (Zn), and boron (B) status. Descriptive statistics showed that most of the measured soil chemical variables (other than pH and P2O5) were skewed and non-normally distributed and logarithmic transformation was then applied. A geostatistical tool, kriging, was used in ArcGIS to interpolate measured values for those variables and several digital map layers were developed based on each soil chemical property. Geostatistical interpolation identified a moderate spatial variability for pH, OM, N, P2O5, and a weak spatial variability for K2O, Zn, and B, depending upon the use of amendments, fertilizing methods, and tillage, along with the inherent characteristics of each variable. Exponential (pH, OM, N, and Zn), Spherical (K2O and B), and Gaussian (P2O5) models were fitted to the semivariograms of the soil variables. These maps allow farmers to assess existing farm soils, thus allowing them to make easier and more efficient management decisions and maintain the sustainability of productivity.


Asunto(s)
Monitoreo del Ambiente/métodos , Suelo/química , Análisis Espacial , Nepal , Nitrógeno/análisis , Fósforo/análisis , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA