Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431952

RESUMEN

Green synthesis of silver nanoparticles (AgNPs) has gained greater interest among chemists and researchers in this current scenario. The present research investigates the larvicidal and anti-proliferation activity of AgNPs derived from Knoxia sumatrensis aqueous leaf extract (K. sumatrensis-ALE) as a potential capping and reducing candidate. The synthesized AgNPs were characterized through-UV-spectra absorption peak at 425 nm. The XRD and FT-IR studied displayed the crystalline nature and presence of functional groups in prepared samples. FE-SEM showed the hexagonal shape of NPs with the size of 7.73 to 32.84 nm. The synthesized AgNPs displayed superior antioxidant and anti-proliferative activity (IC50 53.29 µg/mL) of breast cancer cell line (MCF-7). Additionally, larvicidal activity against mosquito vector Culex quinquefasciatus larvae delivered (LC50-0.40, mg/L, and LC90-15.83) significant mortality rate post treatment with synthesized AgNPs. Overall, the present research illustrates that the synthesized AgNPs have high biological potential and present a perfect contender in the pharmacological and mosquitocidal arena.


Asunto(s)
Insecticidas , Nanopartículas del Metal , Rubiaceae , Animales , Plata/química , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Insecticidas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Rubiaceae/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-35707479

RESUMEN

Breast cancer is the most common cause of cancer mortality in Western nations, with a terrible prognosis. Many studies show that siRNA plays a role in the development of tumors by acting as a tumor suppressor and apoptosis inhibitor or both. siRNAs may be used as diagnostic and prognostic biomarkers in breast cancer. Antisurvivin siRNA was chosen as a therapeutic target in breast cancer treatment because it directly targets survivin, an inhibitor of apoptosis protein, that causes cell death. However, siRNA-based treatment has significant limitations, including a lack of tissue selectivity, a lack of effective delivery mechanisms, low cellular absorption, and the possibility of systemic toxicity. To address some of these issues, we provide a siRNA delivery method based on cationic lipids. In the recent past, cationic liposomes have displayed that they offer a remarkable perspective in proficient siRNA delivery. The presence of a positive charge plays a vital role in firm extracellular siRNA binding along with active intracellular siRNA separation and low biological adversities. Consequently, the methods for developing innovative cationic lipids through rendering and utilization of appropriate positive charges would certainly be helpful for benign and effective siRNA delivery. In the current study, an effort was made to synthesize a 3,4-dimethoxyaniline lipid (DMA) to improve the effectiveness and protection of successful siRNA delivery. DMA cationic lipid successfully delivered survivin siRNA that reduced the survivin mRNA expression, indicating the possibility of utilizing siRNA therapeutics for breast cancer. It is expected that this innovative quaternary amine-based liposome can open up new avenues in the process of developing an easy and extensively used platform for siRNA delivery. Cationic lipoplexes, a potential carrier system for siRNA-based therapies in the treatment of breast cancer, were proven by our data.

3.
Environ Res ; 212(Pt C): 113370, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35504343

RESUMEN

One of the most common environmental pollutant in aquatic ecosystems are polypropylene microplastics and their impacts on aquatic organisms are still scarce. The study aimed to prepare polypropylene microplastics using organic solvent (spherical and 11.86-44.62 µm) and then test their toxicity on the freshwater benthic mollusc grazer Pomaceae paludosa. The present study investigated chronic (28 days) exposure of polypropylene microplastics via dietary supplements (250 mg kg-1, 500 mg kg-1 & 750 mg kg-1) in P. paludosa, and the toxic effect was evaluated in digestive gland tissue. The FTIR results revealed no change in polypropylene microplastics during ingestion or after egestion. On the other hand, Ingestion causes accumulation in their bodies and disrupts redox homeostasis. Meanwhile, alteration occurs in oxidative stress-related biomarkers such as increased reactive oxygen species level (ROS), impaired the biochemical parameters of antioxidant system catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and glutathione - S- transferase (GST), deterioration of oxidative stress effects in lipid peroxidation (LPO) and carbonyl protein (CP) and changed the digestive enzymes such as amylase, pepsin, esterase and alkaline phosphatase that are measured in hepatopancreas tissue. The histology results revealed that ingesting these microplastics caused severe damage to the digestive gland cells. According to the findings, ingestion of polypropylene microplastics in benthic freshwater mollusc causes more serious harm and impacts energy acquisition. This finding represents the ecological risk of polypropylene microplastic pollution in the freshwater ecosystem.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Agua Dulce , Glutatión Transferasa/metabolismo , Moluscos/metabolismo , Estrés Oxidativo , Plásticos/metabolismo , Plásticos/toxicidad , Polipropilenos/metabolismo , Polipropilenos/toxicidad , Contaminantes Químicos del Agua/química
4.
J Trace Elem Med Biol ; 69: 126878, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34688058

RESUMEN

BACKGROUND: Green nanoparticles are subjected as an immunostimulant against bacterial pathogens. METHODS: Murraya koenigii berry extract-based synthesized zinc oxide nanoparticles (Mb-ZnO NPs) and selenium nanoparticles (Mb-Se NPs) were relatively analyzed for immunostimulation in serum and mucus fish Oreochromis mossambicus against Aeromonas hydrophila infections. Initial minimum inhibitory concentration (MIC) was determined for both Mb-ZnO NPs and Mb-Se NPs followed by specific growth rate (SGR), antioxidant level (Superoxide dismutase activity (SOD), Catalase activity (CA), and Glutathione peroxidase activity (GPx)), and immune parameters Myeloperoxidase activity (MPO), Respiratory burst activity (RBA), Lysozyme activity (LYZ), Alkaline phosphatase activity (ALP), Serum antiprotease activity and Natural complement activity (NAC). RESULTS: The potential bacterial inhibition property of Mb-ZnO NPs and Mb-Se NPs exhibited the most negligible concentration of 25 and 15 µg mL-1, respectively, against A. hydrophila. In addition, Mb-ZnO NPs and Mb-Se NPs exhibited 70-80 % and 90-95 % diminished biofilm activity at 50 µg mL-1 that was viewed under an inverted research microscope and confocal laser scanning microscopy (CLSM). Protein leakage and nucleic acid leakage assay quantified oozed out protein and nucleic acid from A. hydrophila that confirms Mb-Se NPs exhibited vigorous antibacterial activity than Mb-ZnO NPs at tested concentrations. Oreochromis mossambicus fed with Mb-ZnO NPs and Mb-Se NPs supplemented diet at different concentrations (0.5 mg/kg, 1 mg/kg and 2 mg/kg) improved SGR along with a rise in the immune response of those fishes against A. hydrophila infection. Serum and mucus of fish fed with Mb-Se NPs supplemented diet exhibited a significant rise in antioxidant level SOD, CA and GPx at a dosage of 2 mg/kg. Likewise, lipid peroxidation assay detected significantly diminished oxidative stress in the serum and mucus of fish fed with Mb-Se NPs supplemented diet (2 mg/kg). Enhanced immune parameters in serum and mucus of fish fed with Mb-Se NPs supplemented diet determined by MPO, RBA, LYZ, ALP, Serum antiprotease activity and NAC. CONCLUSION: Thus O. mossambicus fed with Mb-Se NPs supplemented diet was less prone to become infected by aquatic pathogen A. hydrophila established by challenge study. On the whole, Mb-Se NPs supplemented diet ensured the rise in antioxidant response that boosts the immune responses and reduces the chance of getting infected against A. hydrophila infections.


Asunto(s)
Aeromonas hydrophila , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Nanopartículas , Ácidos Nucleicos , Selenio , Tilapia , Óxido de Zinc , Alimentación Animal/análisis , Animales , Antioxidantes , Dieta , Suplementos Dietéticos/análisis , Resistencia a la Enfermedad , Enfermedades de los Peces/microbiología , Agua Dulce , Infecciones por Bacterias Gramnegativas/veterinaria , Inhibidores de Proteasas , Selenio/farmacología , Superóxido Dismutasa , Tilapia/microbiología , Óxido de Zinc/farmacología
5.
Photodiagnosis Photodyn Ther ; 32: 102058, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33065306

RESUMEN

Copper nanoparticles were synthesized using Manilkara zapota leaf extract. The synthesis of the nanoparticle was primarily visualized when the colour of the reaction mixture turned into reddish-brown. Biosynthesized nanoparticles were characterized by UV-vis, FT-IR, XRD, SEM and EDX. The UV spectra showed maximum absorption at 584 nm. FT-IR studies showed stretching frequency at 592.76 cm-1, which is the fingerprint region for Cu-O bond. The crystallinity of the synthesized copper nanoparticles (Mz-Cu NPs) was revealed through XRD analysis. The synthesized Mz-Cu NPs were spherical with an average size of 18.9-42.5 nm and it was shown by SEM analysis. EDX analysis displayed that the nano sample contains 58 % of copper. The antimicrobial property of the synthesized nanoparticles was evaluated against fungal plant pathogens Rhizoctonia solani (MTCC 12232), Sclerotium oryzae (MTCC 12230) and bacterial species, namely Bacillus subtilis (ATCC 23857), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Vibrio harveyi (ATCC 35084), Vibrio parahaemolyticus (ATCC 33845). In in-vitro haemolytic assay, the particle showed 5.73, 3.34, 0.5 % hemolysis at 100, 50, 25 µg/mL concentration respectively. In the antiproliferative assay, the IC50 values of MCF7 and Vero cells were found to be 53.89 and 883.69 µg/µl. The particle degraded Methyl violet, Malachite green and Coomassie brilliant blue by 92.2, 94.9 and 78.8 %, within 50, 40 and 60 min, respectively, through its photocatalytic activity.


Asunto(s)
Antiinfecciosos , Manilkara , Nanopartículas del Metal , Fotoquimioterapia , Animales , Antibacterianos/farmacología , Ascomicetos , Chlorocebus aethiops , Cobre/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Extractos Vegetales/farmacología , Rhizoctonia , Espectroscopía Infrarroja por Transformada de Fourier , Células Vero , Vibrio
6.
Saudi J Biol Sci ; 27(9): 2403-2409, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32884423

RESUMEN

Aedes mosquitoes are the most important group of vectors that transmit pathogens, including arboviruses, and cause human diseases such as dengue fever, yellow fever, Zika virus, and Chikungunya. Biosynthesis and the use of green silver nanoparticles (AgNPs) is a vital step to identify reliable and eco-friendly controls for these vectors. In this study, Aedes (Ae.) aegypti larvae (2nd and 3rd instar) were exposed to leaf extracts of Ricinus communis (Castor) and AgNPs synthesized from the extract to evaluate their larvicidal potential. Synthesized AgNPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (XRD). Ae. aegypti larvae were treated with different concentrations (50-250 ppm) of the leaf extract and synthesized AgNPs. There were five replicates per treatment, in addition to a positive (temephos) and negative control (dechlorinated water). Mortality was recorded after 12, 24, 36, and 48 h and the data were subjected to Probit analysis. The nanoparticles were more toxic (LC50 = 46.22 ppm and LC90 = 85.30 ppm) than the plant extract (106.24 and 175.73 ppm, respectively). The leaf extracts of Ricinus communis were subjected to HPLC analysis to identify their chemical constituents. This study suggests that plant extracts and synthesized nanoparticles are excellent alternatives to hazardous chemical pesticides used to control vector mosquitoes. This is a potentially useful technique that can reduce aquatic toxicity from insecticide use.

7.
Saudi J Biol Sci ; 27(2): 611-622, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32210679

RESUMEN

Recent trends in anticancer therapy is to use therapeutic agents which not only kill the cancer cell, but are less toxic to surrounding normal cells/tissue. One approach is to cut the nutrient supply to growing tumor cells, by blocking the formation of new blood vessels around the tumor. As the phytochemicals and botanical crude extracts have proven their efficacy as natural antiangiogenic agents with minimum toxicities, there is need to explore varieties of medicinal plants for novel antiangiogenic compounds. Rumex vesicarius L. (Humeidh), is an annual herbal plant with proven medicinal values. The antiangiogenic potential, and developmental toxicity of humeidh in experimental animal models has never been studied before. The crude extracts were prepared from the roots, stems, leaves and flowers of Rumex vesicarius L. in methanol, chloroform, ethyl acetate and n-hexane. The developmental toxicity screening in zebrafish embryos, has revealed that Rumex vesicarius was not toxic to zebrafish embryos. The chloroform stem extract showed significant level of antiangiogenic activity in zebrafish angiogenic assay on a dose dependent manner. Thirty five (35) bioactive compounds were identified by gas chromatography mass spectrophotometry (GC-MS) analysis in the stem extract of Rumex vesicarius. Propanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester, Butane, 1,2,3-tris(trimethylsiloxy), and Butanedioic acid, bis(trimethylsilyl) ester were identified as major compound present in the stem of R. vasicarius. The anticancer activity of roots, stem, leaves and flowers crude extract was evaluated in human breast cancer (MCF7), human colon carcinoma (Lovo, and Caco-2), human hepatocellular carcinoma (HepG2) cell lines. Most of the crude extracts did not show significant level of cytotoxicity in tested cancer cells line, except, chloroform extract of stem which exhibited strong anticancer activity in all tested cancer cells with IC50 values in micro molar range. Based on these results, it is recommended that formulation prepared from R. vesicarius can further be tested in clinical trials in order to explore its therapeutic potential as an effective and safe natural anticancer product.

8.
Saudi J Biol Sci ; 27(1): 335-340, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31889855

RESUMEN

The study was implemented to actuate the qualitative and quantitative phyto constituents of Iresine herbstii extracts and its antiviral efficacy against avian ND virus. Among four tested solvents, the ethanolic extract of Iresine herbstii revealed the presence of highest quantity of all tested phytochemicals while petroleum ether extract showed the least. Folin-Ciocalteu method assessed the range of TPC extended from 81.01 ±â€¯0.67 to 126.35 ±â€¯0.45 µg GAE/mg. Acetonic extract showed the highest amount among all extracts and petroleum ether possessed the lower quantity. TFC ranged from 54.37 ±â€¯0.45 to 88.12 ±â€¯0.26 µg QE/mg followed by colorimetric method. From all extract ethanolic extract showed highest quantity and petroleum ether revealed the lower. HPLC analysis of ethanolic extract of I. herbstii confesses the presence six bioactive components by using the HP5-MS column. To check the antiviral potential of plants, different prepared treatments of plant extract and live virus were inoculated at 9 days old SPF embryonated chicken eggs. Results exposed that all plant extracts produce antiviral activity against NDV in ovo according to their potential and phytochemical profile. The highest survival rate was observed in the ethanolic extract at 400 µg/mL and acetonic extract at 300 µg/mL as it controls the NDV activity completely, evidence of absence of embryo death and HA titre. Dichloromethane and petroleum ether could not inhibit the virus completely. 600 µg/mL concentration was proved as toxic in all extracts except petroleum ether extract which showed a dose dependent pattern.

9.
J Infect Public Health ; 12(2): 275-281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30477919

RESUMEN

INTRODUCTION: Nanoparticles (NPs) have become very important owing to their various uses. In this research, an environmentally friendly biological technique was used to synthesize silver nanoparticles with Coriandrum sativum L. The objective of this research to use the source for the fabrication of silver NPs from C. sativum L., and to check the activity of the fabricated silver NPs was determined versus a couple of gram negative and a couple of gram positive bacteria in the presence of antibiotic viz. gentamicin to judge their impact. METHODOLOGY: A silver nitrate solution, which served as the reducing and capping agent, was mingled with coriander leaf extract. The solution's temperature and pH were maintained at 75°C and 8.6, respectively. The observed mean particle size (z-average) and polydispersity index were 390.2nm and 0.452, respectively. The synthesized Ag NPs were characterized using different techniques, including scanning electron microscopy (SEM), X-ray diffraction, and Fourier transmission infrared (FTIR) analysis. The globular shape of the silver nanoparticles was depicted in SEM illustrations. RESULTS: XRD data revealed the mean size of the particles was 11.9nm. The FTIR analysis showed the existence of various functional groups, including CO and OH. When their antibacterial ability was tested, it was found that the fabricated Ag NPs inhibited Bacillus subtilis, Pasteurella multocida, Enterobacter aerogenes, and Staphylococcus aureus, with a greater effect against B. subtilis and P. multocida compared to E. aerogenes and S. aureus. CONCLUSION: It has been concluded small silver NPs benefited from a higher surface area ratio, as shown by the results of experiments where smaller particles had a better bactericidal proficiency than large silver-based NPs. Silver-based NPs infiltrate bacterial cells, as well as interfere with their exterior membrane. Silver ions also have the potential to interact with bacterial DNA, inhibiting the reproductive system of the cell.


Asunto(s)
Antiinfecciosos/farmacología , Coriandrum/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Plata/farmacología , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Microscopía Electrónica de Rastreo , Extractos Vegetales/metabolismo , Plata/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA