Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 63(23): 6580-6614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35170391

RESUMEN

The genus Allium comprises of at least 918 species; the majority grown for dietary and medicinal purposes. This review describes the traditional uses, phytoconstituents, anti-inflammatory and anticancer activity, and safety profile of six main species, namely Allium sativum L. (garlic), Allium cepa L. (onions), Allium ampeloprasum L. (leek), Allium fistulosum L. (scallion), Allium schoenoprasum L. (chives) and Allium tuberosum Rottler (garlic chives). These species contain at least 260 phytoconstituents; mainly volatile compounds-including 63 organosulfur molecules-, saponins, flavonoids, anthocyanins, phenolic compounds, amino acids, organic acids, fatty acids, steroids, vitamins and nucleosides. They have prominent in vitro anti-inflammatory activity, and in vivo replications of such results have been achieved for all except for A. schoenoprasum. They also exert cytotoxicity against different cancer cell lines. Several anticancer phytoconstituents have been characterized from all except for A. fistulosum. Organosulfur constituents, saponins and flavonoid glycosides have demonstrated anti-inflammatory and anticancer activity. Extensive work has been conducted mainly on the anti-inflammatory and anticancer activity of A. sativum and A. cepa. The presence of anti-inflammatory and anticancer constituents in these two species suggests that similar bioactive constituents could be found in other species. This provides future avenues for identifying new Allium-derived anti-inflammatory and anticancer agents.


Asunto(s)
Ajo , Neoplasias , Humanos , Verduras , Antocianinas/metabolismo , Cebollas/química , Ajo/química , Neoplasias/tratamiento farmacológico , Antioxidantes/análisis , Inflamación/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/metabolismo
2.
Biomed Pharmacother ; 142: 112109, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34470730

RESUMEN

Plant-derived chemicals are a source of novel chemotherapeutic agents. Throughout the human civilization, these novel chemicals have led to the discovery of new pharmacological active agents. Research on herbal medicine is of great importance, as most of the active agents used for treating numerous diseases are from natural sources, while other agents are either semisynthetic or synthetic. Pongamol, a flavonoid, which is the main constituent of Pongamia pinnata, is one such active agents, which exhibits diverse pharmacological activities. Various in vivo and in vitro studies revealed that pongamol is a potentially active agent, as it exerts anticancer, anti-inflammatory, antioxidant, antimicrobial, and anti-diabetic activities. Accordingly, the aim of the present review was to give an up-to-date overview on the chemistry, isolation, bioavailability, pharmacological activity, and health benefits of pongamol. This review focuses on the medicinal and health promoting activities of pongamol, along with possible mechanisms of action. For this purpose, this review summarizes the most recent literature pertaining to pongamol as a therapeutic agent against several diseases. In addition, the review covers information related to the toxicological assessment and safety of this phytochemical, and highlights the medicinal and folk values of this compound against various diseases and ailments.


Asunto(s)
Benzofuranos/farmacología , Millettia/química , Animales , Benzofuranos/efectos adversos , Benzofuranos/aislamiento & purificación , Disponibilidad Biológica , Humanos , Medicina Tradicional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA