Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 164: 114935, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37245337

RESUMEN

Asthma is a chronic inflammatory disease characterized by airway hypersensitivity and remodeling. The current treatments provide only short-term benefits and may have undesirable side effects; thus, alternative or supplementary therapy is needed. Because intracellular calcium (Ca2+) signaling plays an essential role in regulating the contractility and remodeling of airway smooth muscle cells, the targeting of Ca2+ signaling is a potential therapeutic strategy for asthma. Houttuynia cordata is a traditional Chinese herb that is used to treat asthma due to its anti-allergic and anti-inflammatory properties. We hypothesized that H. cordata might modulate intracellular Ca2+ signaling and could help relieve asthmatic airway remodeling. We found that the mRNA and protein levels of inositol trisphosphate receptors (IP3Rs) were elevated in interleukin-stimulated primary human bronchial smooth muscle cells and a house dust mite-sensitized model of asthma. The upregulation of IP3R expression enhanced intracellular Ca2+ release upon stimulation and contributed to airway remodeling in asthma. Intriguingly, pretreatment with H. cordata essential oil rectified the disruption of Ca2+ signaling, mitigated asthma development, and prevented airway narrowing. Furthermore, our analysis suggested that houttuynin/2-undecanone could be the bioactive component in H. cordata essential oil because we found similar IP3R suppression in response to the commercially available derivative sodium houttuyfonate. An in silico analysis showed that houttuynin, which downregulates IP3R expression, binds to the IP3 binding domain of IP3R and may mediate a direct inhibitory effect. In summary, our findings suggest that H. cordata is a potential alternative treatment choice that may reduce asthma severity by targeting the dysregulation of Ca2+ signaling.


Asunto(s)
Antiasmáticos , Asma , Houttuynia , Humanos , Señalización del Calcio , Houttuynia/metabolismo , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Bronquios/metabolismo , Asma/tratamiento farmacológico , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Calcio/metabolismo
2.
Biomed Pharmacother ; 143: 112101, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34474340

RESUMEN

Chronic obstructive pulmonary disease (COPD) is among the leading causes of death worldwide, and is characterized by persistent respiratory symptoms and airflow limitation due to chronic airway inflammation. Cigarette smoking is a major risk factor for COPD. This study aims to determine the therapeutic effects of polysaccharides extracted from Dendrobium officinale (DOPs), a valuable traditional Chinese Medicinal herb, on cigarette smoke (CS)-induced airway inflammation in a rat passive smoking model. Male Sprague-Dawley rats were exposed to CS or sham air (SA) as control for a 56-day period. On Day 29, rats were subdivided and given water, DOPs or N-acetylcysteine (NAC) via oral gavage on a daily basis for the remaining duration. DOPs reduced CS-induced oxidative stress as evidenced by reducing malondialdehyde (MDA) levels in the lung. DOPs also exerted potent anti-inflammatory properties as evidenced by a reduction in the number of lymphocytes and monocytes in serum, significantly attenuating infiltration of inflammatory cells in lung tissue, as well as pro-inflammatory mediators in serum, bronchoalveolar lavage (BAL) and lung. Additionally, DOPs inhibited the CS-induced activation of ERK, p38 MAPK and NF-κB signaling pathways. These findings suggest that DOPs may have potentially beneficial effects in limiting smoking-related lung oxidative stress, and inflammation mediated via the inhibition of MAPK and NF-κB signaling pathways in smokers, without or with COPD.


Asunto(s)
Antioxidantes/farmacología , Dendrobium , Pulmón/efectos de los fármacos , Extractos Vegetales/farmacología , Neumonía/prevención & control , Polisacáridos/farmacología , Humo/efectos adversos , Productos de Tabaco/efectos adversos , Animales , Antioxidantes/aislamiento & purificación , Dendrobium/química , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Extractos Vegetales/aislamiento & purificación , Neumonía/etiología , Neumonía/inmunología , Neumonía/metabolismo , Polisacáridos/aislamiento & purificación , Ratas Sprague-Dawley , Transducción de Señal
3.
Phytomedicine ; 58: 152768, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31005721

RESUMEN

BACKGROUND: Cigarette smoking is the leading cause for the initiation and development of cardiovascular disease (CVD). Oxidative stress and inflammatory responses play important roles in the pathophysiological processes of smoking-induced cardiac injury. (-)-epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, which is made from Camellia sinensis leaves, has been reported to possess potent anti-oxidant property. PURPOSE: This study aims to investigate whether the antioxidant EGCG could alleviate cigarette smoke medium (CSM)-induced inflammation in human AC16 cardiomyocytes in vitro. METHODS: Human AC16 cardiomyocytes were pre-treated with EGCG, N-acetyl-L-cysteine (NAC), or specific inhibitors for 30 min before 4% CSM was added. Supernatant was collected for determination of interleukin (IL)-8 by ELISA and cells were collected for flow cytometry, biochemical assays and Western blot analysis. RESULTS: EGCG treatment significantly attenuated CSM-induced oxidative stress as evidenced by reducing intracellular and mitochondrial reactive oxygen species (ROS) generations and preventing antioxidant depletion. EGCG treatment reduced CSM-induced inflammatory chemokine interleukin (IL)-8 productions in the supernatant via the inhibition of ERK1/2, p38 MAPK and NF-κB pathways. EGCG treatment further inhibited CSM-induced cell apoptosis. CONCLUSION: Taken together, EGCG protected against CSM-induced inflammation and cell apoptosis by attenuating oxidative stress via inhibiting ERK1/2, p38 MAPK, and NF-κB activation in AC16 cardiomyocytes. These findings suggest that EGCG with its antioxidant, anti-inflammatory and anti-apoptotic properties may act as a promising cardioprotective agent against ROS-mediated cardiac injury.


Asunto(s)
Catequina/análogos & derivados , Miocarditis/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , FN-kappa B/metabolismo , Fumar/efectos adversos , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Catequina/farmacología , Línea Celular , Humanos , Interleucina-8/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocarditis/inducido químicamente , Miocarditis/patología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Food Chem Toxicol ; 107(Pt A): 248-260, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28689063

RESUMEN

Breast cancer is the most frequently diagnosed cancer and cause of cancer death in women worldwide. Current treatments often result in systematic toxicity and drug resistance. Combinational use of non-toxic phytochemicals with chemotherapeutic agents to enhance the efficacy and reduce toxicity would be one promising approach. In this study, bioactive proanthocyanidins from Uncaria rhynchophylla (UPAs) were isolated and their anti-breast cancer effects alone and in combination with 5- fluorouracil (5-FU) were investigated in MDA-MB-231 breast cancer cells. The results showed that UPAs significantly inhibited cell viability and migration ability in a dose-dependent manner. Moreover, UPAs induced apoptosis in a dose-dependent manner which was associated with increased cellular reactive oxygen species production, loss of mitochondrial membrane potential, increases of Bax/Bcl-2 ratio and levels of cleaved caspase 3. Treatments of the cells with UPAs resulted in an increase in G2/M cell cycle arrest. Cytotoxic effects of 5-FU against MDA-MB-231 cells were enhanced by UPAs. The combination treatment of UPAs and 5-FU for 48 h elicited a synergistic cytotoxic effect on MDA-MB-231 cells. Altogether, these data suggest that UPAs are potential therapeutic agents for breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/fisiopatología , Medicamentos Herbarios Chinos/farmacología , Fluorouracilo/farmacología , Proantocianidinas/farmacología , Uncaria/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo
5.
Free Radic Res ; 46(9): 1123-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22574903

RESUMEN

Our recent study has indicated that Chinese green tea (Lung Chen), in which epigallocatechin-3-gallate (EGCG) accounts for 60% of catechins, protected cigarette smoke-induced lung injury. We now hypothesized that Lung Chen tea may also have potential effect on lung oxidative stress and proteases/anti-proteases in a smoking rat model. Sprague-Dawley rats were exposed to either sham air (SA) or 4% cigarette smoke (CS) plus 2% Lung Chen tea or water by oral gavage. Serine proteases, matrix metalloproteinases (MMPs) and their respective endogenous inhibitors were determined in bronchoalveolar lavage (BAL) and lung tissues by gelatin/casein zymography and biochemical assays. Green tea consumption significantly decreased CS-induced elevation of lung lipid peroxidation marker, malondialdehyde (MDA), and CS-induced up-regulation of neutrophil elastase (NE) concentration and activity along with that of α(1)-antitrypsin (α(1)-AT) and secretory leukoproteinase inhibitor (SLPI) in BAL and lung. In parallel, significant elevation of MMP-12 activity was found in BAL and lung of the CS-exposed group, which returned to the levels of SA-exposed group after green tea consumption but not CS-induced reduction of tissue inhibitor of metalloproteinase (TIMP)-1 activity, which was not reversed by green tea consumption. Taken together, our data supported the presence of local oxidative stress and protease/anti-protease imbalance in the airways after CS exposure, which might be alleviated by green tea consumption through its biological antioxidant activity.


Asunto(s)
Antioxidantes/farmacología , Elastasa de Leucocito/metabolismo , Pulmón/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Fumar/efectos adversos , , Animales , China , Modelos Animales de Enfermedad , Elastasa de Leucocito/análisis , Pulmón/efectos de los fármacos , Pulmón/enzimología , Masculino , Malondialdehído/metabolismo , Ratas , Ratas Sprague-Dawley , Productos de Tabaco/efectos adversos , Regulación hacia Arriba/efectos de los fármacos
6.
Respirology ; 17(2): 223-36, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21992649

RESUMEN

OSA is increasingly recognized as a major health problem in developed countries. Obesity is the most common risk factor in OSA and hence, the prevalence of OSA is undoubtedly rising given the epidemic of obesity. Recent data also suggest that OSA is highly associated with the metabolic syndrome, and it is postulated that OSA contributes to cardiometabolic dysfunction, and subsequently vasculopathy. Current evidence regarding the magnitude of impact on ultimate cardiovascular morbidity or mortality attributable to OSA-induced metabolic dysregulation is scarce. Given the known pathophysiological triggers of intermittent hypoxia and sleep fragmentation in OSA, the potential mechanisms of OSA-obesity-metabolic syndrome interaction involve sympathetic activation, oxidative stress, inflammation and neurohumoral changes. There is accumulating evidence from human and animal/cell models of intermittent hypoxia to map out these mechanistic pathways. In spite of support for an independent role of OSA in the contribution towards metabolic dysfunction, a healthy diet and appropriate lifestyle modifications towards better control of metabolic function are equally important as CPAP treatment in the holistic management of OSA.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Apnea Obstructiva del Sueño/complicaciones , Países Desarrollados , Humanos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/etiología , Síndrome Metabólico/fisiopatología , Obesidad/complicaciones , Obesidad/fisiopatología , Estrés Oxidativo , Prevalencia , Salud Pública , Factores de Riesgo , Apnea Obstructiva del Sueño/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA