Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Pollut ; 344: 123400, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272167

RESUMEN

Environmental pollution poses risks to ecosystems. Among these risks, one finds neurotoxicity and damage to the lateral line structures of fish, such as the neuromast and its hair cells. Zebrafish (Danio rerio) is recommended as model species to be used in ecotoxicological studies and environmental biomonitoring programs aimed at assessing several biomarkers, such as ototoxicity. However, little is known about the history of and knowledge gaps on zebrafish ototoxicity. Thus, the aim of the current study is to review data available in the scientific literature about using zebrafish as animal model to assess neuromast toxicity. It must be done by analyzing the history and publication category, world production, experimental design, developmental stages, chemical classes, neuromasts and hair cell visualization methods, and zebrafish strains. Based on the results, number, survival and fluorescence intensity of neuromasts, and their hair cells, were the parameters oftentimes used to assess ototoxicity in zebrafish. The wild AB strain was the most used one, and it was followed by Tübingen and transgenic strains with GFP markers. DASPEI was the fluorescent dye most often applied as method to visualize neuromasts, and it was followed by Yo-Pro-1 and GFP transgenic lines. Antibiotics, antitumorals, metals, nanoparticles and plant extracts were the most frequent classes of chemicals used in the analyzed studies. Overall, pollutants can harm zebrafish's mechanosensory system, as well as affect their behavior and survival. Results have shown that zebrafish is a suitable model system to assess ototoxicity induced by environmental pollution.


Asunto(s)
Ototoxicidad , Perciformes , Animales , Pez Cebra , Ecosistema , Antibacterianos/toxicidad , Contaminación Ambiental
2.
Sci Total Environ ; 873: 162402, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841404

RESUMEN

It has been shown that vegetal species constitute an alternative natural source for the biosynthesis of new nanomaterials. Thus, aiming to expand knowledge about the potential use of plants in the fabrication of metallic nanomaterials, we aimed to synthesize silver nanoparticles (AgNPs) from phyto-formulation (PF) of ten commonly used medicinal plants. Our results demonstrate the formation of spherical, stable, polycrystalline AgNPs with a diameter of 8.42 nm to 18.40 nm, whose biosynthesis confirmation was performed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM)-energy dispersive X-ray spectroscopy (EDS) mapping, high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta potential studies. Furthermore, we demonstrated that the biosynthesized AgNPs showed larvicidal activity against Aedes aegypti and Anopheles stephensi larvae, with the histopathology findings from the fourth instar larval stage validating such larvicidal toxicity. The histological examinations showed severe degradation of the larvae's hindgut, epithelial cells, midgut, and cortical area. However, the PF extract and the biosynthesized AgNPs showed high ecotoxicity in Danio rerio larvae exposed to different concentrations. The treatments induced changes in hatchability percentage, animal growth, and heartbeat. Therefore, despite supporting the potential of PF (from ten plant species) as a raw material source for AgNPs biosynthesis, our study also sheds light on its ecotoxicological potential, suggesting that more comprehensive assessments of the ecotoxicity of biosynthesized would be performed before its application in different sectors.


Asunto(s)
Culex , Insecticidas , Nanopartículas del Metal , Plantas Medicinales , Animales , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Larva/metabolismo , Hojas de la Planta/química , Insecticidas/metabolismo
3.
Sci Total Environ ; 857(Pt 3): 159517, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36302403

RESUMEN

Although numerous drugs are practiced to control malaria and its vectors, more recently, eco-friendly control tools have been proposed to battle its etiologic agents. Thus, using green bionanotechnology approaches, we aimed to synthesize palladium nanoparticles (Pd NPs) from the macroalgae Sargassum fusiforme (Sf), its potential antiparasitic activity against P. falciparum, as well as its possible cytotoxicity, in HeLa cells. After the biosynthesis of the PdSf NPs, their characterization was carried out by UV-Vis, FESEM, and EDX analyses, and their hydrodynamic size, zeta potential, and surface area were determined. Furthermore, the functional groups of the PdSf NPs were analyzed by FT-IR and GC-MS. While PdSf NPs had an IC50 of 7.68 µg/mL (Chloroquine (CQ)-s) and 16.42 µg/mL, S. fusiforme extract had an IC50 of 14.38 µg/mL (CQ-s) and 35.27 µg/mL (CQ-r). With an IC50 value of 94.49 µg/mL, PdSf NPs exhibited the least toxic effect on the HeLa cells. The Lipinski rule of five and ADMET prediction were used to assess the in silico models of caffeine acid hexoside and quercetin 7-O-hexoside for the presence of drug-like properties. Pathogenic proteins, primarily responsible for motility, binding, and disease-causing, were the target of the structurally based docking studies between plant-derived compounds and pathogenic proteins. Thus, our study pioneered promising results that support the potential antiplasmodial activity of eco-friendly synthesized PdSf NPs using S. fusiforme extract against P. falciparum, opening perspectives for further exploration into the use of these NPs in malaria therapy.


Asunto(s)
Anopheles , Malaria , Nanopartículas del Metal , Sargassum , Algas Marinas , Animales , Humanos , Plasmodium falciparum , Paladio , Anopheles/parasitología , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Algas Marinas/química , Células HeLa , Espectroscopía Infrarroja por Transformada de Fourier , Larva , Mosquitos Vectores , Extractos Vegetales/química
4.
Sci Total Environ ; 863: 160935, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36527898

RESUMEN

The present study aimed to assess the Bacillus cereus SDN1 native bacterium's ability to clean up contaminated or polluted water. The isolated bacterium was identified by its morphological and biochemical characteristics, which were then confirmed at the genus level. Furthermore, the isolated B. cereus (NCBI accession No: MW828583) was identified genomically by PCR amplifying 16 s rDNA using a universal primer. The phylogenetic analysis of the rDNA sequence was analyzed to determine the taxonomic and evolutionary profile of the isolate of the previously identified Bacillus sp. Besides, B. cereus and the bacterial consortium were treated using sewage wastewater. After 15 days of treatment, the following pollutants or chemicals were reduced: total hardness particles removal varied from 63.33 % to 67.55 %, calcium removal varied from 90 % to 93.33 %, and total nitrate decreased range from 37.77 % to 22.22 %, respectively. Electrical conductivity ranged from 1809 mS/cm to 2500 mS/cm, and pH values ranged from 6.5 to 8.95. The outcome of in-situ remediation results suggested that B. cereus has a noticeable remediation efficiency to the suspended particles. A root tip test was also used to investigate the genotoxicity of treated and untreated sewage-contaminated waters on onion (Allium cepa) root cells. The highest chromosomal aberrations and mitotic inhibition were found in roots exposed to contaminated sewage water, and their results displayed chromosome abnormalities, including disorganized, sticky chain, disturbed metaphase, chromosomal displacement in anaphase, abnormal telophase, spindle disturbances, and binucleate cells observed in A. cepa exposed to untreated contaminated water. The study can thus be applied as a biomarker to detect the genotoxic impacts of sewage water pollution on biota. Furthermore, based on an identified bacterial consortium, this work offers a low-cost and eco-favorable method for treating household effluents.


Asunto(s)
Contaminantes Ambientales , Cebollas , Cebollas/genética , Aguas Residuales , Aguas del Alcantarillado , Bacillus cereus/genética , Biodegradación Ambiental , Filogenia , Agua , Raíces de Plantas , Aberraciones Cromosómicas , Daño del ADN
5.
Sci Total Environ ; 861: 160575, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36462660

RESUMEN

Due to their huge surface area to volume ratio, metallic nanoparticles are becoming increasingly important in numerous spheres of life. Here, initially, we aimed to evaluate the potential use of Cassia auriculata (CA) extract to synthesize silver nanoparticles (AgNPs). Then, we evaluated its antimicrobial potential and antioxidant capacity, as well as performed in silico analysis, and investigated the possible non-toxic effect of AgNPs on Artemia nauplii. Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDX), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies were used to characterize the biosynthesized AgNPs. Our data indicate that Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus bacteria were susceptible to the biosynthesized AgNPs, whose effect was concentration-response. With a ZOI of 10 mm, the AgNPs were most efficient against gram-positive B. cereus bacteria at the highest concentration (75 µg/mL). The biosynthesized AgNPs (at 25 to 125 µg/mL) showed good antioxidant activity in the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and FRAP (ferric reducing antioxidant power) assays. Oleanolic acid from CA exhibited strong binding affinity and high binding energy to E. coli and B. cereus (-9.66 and - 9.74 kcal/mol) on in silico research. According to the comparative non-toxicity analysis, AgNPs, AgNO3, and CA bark extract had the least toxic effects on A. nauplii, with respective mortality rates of 28.14, 32.26, and 38.42 %, respectively. In conclusion, the current work showed that AgNPs produced from CA bark could be a promising material for diverse applications.


Asunto(s)
Asteraceae , Cassia , Nanopartículas del Metal , Animales , Antioxidantes/farmacología , Plata/química , Artemia , Cassia/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Escherichia coli , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Bacterias Grampositivas , Antibacterianos/toxicidad , Difracción de Rayos X
6.
Sci Total Environ ; 858(Pt 1): 159512, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265619

RESUMEN

The resistance to insecticides among insects, including mosquitoes and agricultural pests, and the impact of these compounds' environmental risks and health issues have motivated the proposition of eco-friendly alternatives. Thus, we aimed to explore the potential use of Desmostachya bipinnata for the biosynthesis of TiO2NPs and evaluate their larvicidal and pupicidal activity of target (Aedes aegypti and Spodoptera litura) and acute toxicity in non-target organisms (Toxorhynchites splendens and Eisenia fetida), at distinct concentrations, after 24 h of exposure. The characterization of the biosynthesized TiO2NPs was carried out by FT-IR, XRD, SEM, and EDX analysis. Under the UV-vis spectrum analysis, a sharp peak was recorded at 200 to 800 nm, which indicated the production of TiO2NPs by the plant extract. The SEM analysis revealed that the synthesized TiO2NPs were spherical with a diameter of 36.4 nm and were detected in the XRD spectrum analysis related to the TiO2NPs. The highest percentage of mortality recorded at 900 µg/mL was 96 % and 94 % in the 2nd instar of A. aegypti and S. litura larvae, respectively, and exhibited the LC50 and LC90 values 5 of 458.79 and 531.01 µg/mL, respectively. The biosynthesized TiO2NPs showed concentration-dependent increased pupal lethality for both A. aegypti and S. litura. We also observed increased detoxification enzyme activity (α esterase, ß esterase, and glutathione-S-transferase) of A. aegypti and S. litura exposed to different concentrations of biosynthesized TiO2NPs as histopathological changes in the midgut region of these animals. On the other hand, the mortality rate of non-target organisms (T. splendens and E. fetida) was lower when exposed to TiO2NPs, compared to the high lethality induced by synthetic pesticides (cypermethrin and monocrotophos for E. fetida; and cypermethrin and temphos for T. splendens). Thus, our study provides pioneering evidence on the potential use of D. bipinnata-mediated TiO2NPs for controlling mosquito vectors and agricultural pest management.


Asunto(s)
Aedes , Insecticidas , Nanopartículas del Metal , Animales , Spodoptera , Plata/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/toxicidad , Hojas de la Planta , Insecticidas/toxicidad , Larva , Extractos Vegetales/farmacología , Esterasas
7.
Sci Total Environ ; 852: 158502, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36058332

RESUMEN

Mosquitoes' current insecticide resistance status in available public health insecticides is a serious threat to mosquito control initiatives. Microbe-based control agents provide an alternative to conventional pesticides and insecticides, as they can be more targeted than synthetic insecticides. The present study was focused on identifying and investigating the mosquitocidal potential of Cladophialophora bantiana, an endophytic fungus isolated from Opuntia ficus-indica. The Cladophialophora species was identified through phylogenetic analysis of the rDNA sequence. The isolated fungus was first evaluated for its potential to produce metabolites against Aedes aegpti and Culex quinquefasciatus larvae in the 1-4th instar. The secondary metabolites of mycelium extract were assessed at various test doses (100, 200, 300, 400, and 500 µg/mL) in independent bioassays for each instar of selected mosquito larvae. After 48 h of exposure, A. aegypti expressed LC50 values of 13.069, 18.085, 9.554, and 11.717 µg/mL and LC90 = 25.702, 30.860, 17.275, and 19.601 µg/mL; followed by C. quinquefasciatus LC50 = 14.467, 11.766, 5.934, and 7.589 µg/mL, and LC90 = 29.529, 20.767, 11.192, and 13.296 µg/mL. The mean % of ovicidal bioassay was recorded 120 h after exposure. The hatchability (%) was proportional to mycelia metabolite concentration. The enzymatic level of acetylcholinesterase in fungal mycelial metabolite treated 4th instar larvae indicated a dose-dependent pattern. The GC-MS profile of C. bantiana extracts identified five of the most abundant compounds, namely cyclobutane, trans-3-undecene-1,5-diyne, 1-bromo-2-chloro, propane, 1,2,3-trichloro-2-methyl-, 5,5,10,10-tetrachlorotricyclo, and phenol, which had the killing effect in mosquitoes. Furthermore, the C. bantiana fungus ethyl acetate extracts had a strong larvicidal action on A. aegypti and C. quinquefasciatus. Finally, the toxicity test on zebrafish embryos revealed the induction of malformations only at concentrations above 1 mg/mL. Therefore, our study pioneered evidence that C. bantiana fungal metabolites effectively control A. aegypti and C. qunquefasciastus and show less lethality in zebrafish embryos at concentrations up to 500 µg/mL.


Asunto(s)
Aedes , Anopheles , Culex , Ciclobutanos , Insecticidas , Animales , Pez Cebra , Insecticidas/toxicidad , Acetilcolinesterasa , Propano/farmacología , Filogenia , Ciclobutanos/farmacología , Extractos Vegetales/farmacología , Control de Mosquitos , Larva , Fenoles , ADN Ribosómico , Diinos/farmacología , Hojas de la Planta
8.
Environ Res ; 214(Pt 4): 114009, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36027957

RESUMEN

Plant extracts' ability to collect metals and decrease metal ions makes them a superior candidate for the biosynthesis of nanoparticles; hence, they are referred to as bio-nano factories since both living and dead dried biomass are employed to produce metallic nanoparticles. The antiparasitic activity of biosynthesized copper oxide nanoparticles (CuO NPs) was examined against cow tick larvae (Rhipicephalus microplus, Haemaphysalis bispinosa, and Hippobosca maculata). These parasitic larvae were treated with various concentrations of methanolic leaf extract of A. marmelos (MLE-AM) and biosynthesized CuO NPs for 24 h. CuO NPs were synthesized quickly using A. marmelos leaf extract, and nanoparticle synthesis was identified within 15 min. The results from characteristic XRD, FTIR, SEM, EDX, and TEM analyses confirmed the biosynthesis of CuO NPs. The presence of 26-Hydroxycholesterol was discovered as the predominant chemical present in the GC-MS analysis of MLE-AM. The maximum efficacy was observed in biosynthesized CuO NPs against R. microplus larvae, H. bispinosa adults, and Hip. maculata larvae (LC50 = 4.30, 9.50, and 11.13 mg/L; and LC90 = 8.30, 19.57, and 21.65 mg/L; and 6.219, 6.547, and 2.587). Overall, the bio-fabrication of CuO NPs has the potential to develop better and safer antiparasitic control techniques.


Asunto(s)
Acaricidas , Nanopartículas del Metal , Nanopartículas , Parásitos , Acaricidas/farmacología , Animales , Antiparasitarios/toxicidad , Bovinos , Cobre/toxicidad , Femenino , Larva , Nanopartículas del Metal/toxicidad , Óxidos , Extractos Vegetales/farmacología
9.
Environ Res ; 213: 113711, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35728640

RESUMEN

The use of vegetal species for gold nanoparticles (AuNPs) biosynthesis can constitute an alternative to replacing the extensive use of several hazardous chemicals commonly used during NPs synthesis and, therefore, can reduce biological impacts induced by the release of these products into the natural environment. However, the "green nanoparticles" and/or "eco-friendly nanoparticles" label does not ensure that biosynthesized NPs are harmless to non-target organisms. Thus, we aimed to synthesize AuNPs from seaweed Gracilaria crassa aqueous extract through an eco-friendly, fast, one-pot synthetic route. The formation of spherical, stable, polycrystalline NPs with a diameter of 32.0 nm ± 4.0 nm (mean ±SEM) was demonstrated by UV-vis spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy, energy-dispersive X-ray and X-ray diffraction measurement, and Fourier-transform infrared spectroscopy analysis. In addition, different phytocomponents were identified in the biosynthesized AuNPs, using Gas Chromatography-Mass Spectrometry (GC-MS). However, both G. crassa aqueous extract and the biosynthesized AuNPs showed high ecotoxicity in Anopheles stephensi larvae exposed to different concentrations. Therefore, our study supports the potential of seaweed G. crassa as a raw material source for AuNPs biosynthesis while also shedding light on its ecotoxicological potential, which necessitates consideration of its risk to aquatic biota.


Asunto(s)
Gracilaria , Nanopartículas del Metal , Oro/química , Oro/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Extractos Vegetales/toxicidad , Hojas de la Planta , Espectroscopía Infrarroja por Transformada de Fourier
10.
Sci Total Environ ; 837: 155833, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561914

RESUMEN

Microplastic pollution is a global concern, mainly due to its adverse effects on organisms and ecosystems. However, our knowledge of its impact on humans, in particular, is still very limited. Thus, while we have not gathered definitive information on their consequences, studies that aim to identify the MP's sources constitute subsidies to better understand the various exposure pathways to these pollutants. Thus, we investigated the possible presence of MP-like particles in teabag samples (of different brands) obtained in Dhaka, Bangladesh. Surprisingly, all analyzed samples (five brands) were contaminated with MPs. Fragments and fibers were identified in a higher percentage, and a wide variety of colors was identified, with a predominance of brown, blue, and red colors. Scanning electron microscope images of teabags exhibited net-like structures of fiber particles with a smooth surface. Furthermore, we observed irregularly shaped MPs and rougher surfaces and fragments in the process of detachment from the main fiber, oxidation flakes, and fracture-like. The average size of these pollutants was between 200.6 and 220.7 µm, and the polymer types identified via Fourier-transform infrared spectroscopy (FT-IR) were polytetrafluoroethylene, high-density polyethylene, polycarbonate, nylon, polyvinyl chloride, polytetrafluoroethylene, ethylene-vinyl acetate, cellulose acetate, and acrylonitrile butadiene styrene, the last three being the most frequent in the analyzed samples. Finally, we noticed that MPs from tea bags in Dhaka could cause an average emission of 10.9 million grams of MPs/year. Although the teabags analyzed in our study are not "complemented with the appealing flavor of MPs", it is very likely that tea ingestion in Dhaka is accompanied by the concomitant ingestion of plastic particles making teabags an important route of human exposure to these micropollutants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Bangladesh , Ecosistema , Monitoreo del Ambiente , Humanos , Plásticos , Politetrafluoroetileno , Espectroscopía Infrarroja por Transformada de Fourier , , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Pollut Res Int ; 26(2): 2013-2021, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30460649

RESUMEN

Smoked cigarette butt (SCB) discharged in the environment became an issue of unknown consequences for plants. Thus, we aim at assessing the impact of water containing SBC leachate on the meristem cells of Allium cepa roots. We defined the following experimental groups: negative control (water), positive control (cyclophosphamide); water with SCB leachate at environmental concentration (1.9 µg/L of nicotine) (EC1× group) and water with SCB leachate concentration 1000 times higher than EC1 (EC1000× group). Mitotic index, total number of abnormal cells, index of abnormal cells per mitotic/phase, relative growth index, and inhibition index were calculated after 48 exposure hours. Root meristems were used to prepare slides in order to investigate chromosomal and nuclear abnormalities. According to our data, plants exposed to SCB leachate presented low relative growth index, high inhibition index, large number of abnormal cells, and high abnormality frequency at metaphase/anaphase. The exposed A. cepa recorded a wide variety of abnormalities such as diagonal metaphase/anaphase, metaphase/anaphase presenting chromosome fragments, binucleated cells, displaced nucleus, chromosome bridges, micronuclei, necrotic cells, stick metaphase, chromosome adherence, notched nucleus, among other cell disturbances. The chemicals in the SBC leachate had aneugenic and clastogenic effect on the genetic material of the tested plants, either when they acted individually, synergistically, or additively. Thus, our study is a pioneer in reporting that the mere disposal of cigarette butts in the environment can have cytotoxic, genotoxic, and mutagenic effects on plants.


Asunto(s)
Productos de Tabaco/toxicidad , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Aberraciones Cromosómicas , Índice Mitótico , Pruebas de Mutagenicidad , Mutágenos , Cebollas , Raíces de Plantas
12.
Chemosphere ; 184: 148-158, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28586655

RESUMEN

The accumulated organic residues in tannery-plant courtyards are an eating attraction to small rodents; however, the contact of these animals with these residues may change their social behavior. Thus, the aim of the present study is to investigate whether the exposure to tannery effluent (TE) can damage the social recognition memory of female Swiss mice, as well as to assess whether vitamin C supplementation could provide information about how TE constituents can damage these animals' memory. We have observed that resident females exposed to TE (without vitamin supplementation) did not explore the anogenital region, their body or chased intruding females for shorter time or with lower frequency during the retest session of the social recognition test, fact that indicates social recognition memory deficit in these animals. Such finding is reinforced by the confirmation that there was no change in the animals' olfactory function during the buried food test, or locomotor changes in females exposed to the pollutant. Since no behavioral change was observed in the females exposed to TE and treated with vitamin C (before or after the exposure), it is possible saying that these social cognitive impairments seem to be directly related to the imbalance between the cellular production of reactive oxygen species and the counteracting antioxidant mechanisms (oxidative stress) in female mice exposed to the pollutant (without vitamin supplementation). Therefore, the present study evidences that the direct contact with tannery effluent, even for a short period-of-time, may cause short-term social memory deficits in adult female Swiss mice.


Asunto(s)
Sustancias Peligrosas/toxicidad , Residuos Industriales/análisis , Trastornos de la Memoria/inducido químicamente , Memoria/efectos de los fármacos , Curtiembre , Pruebas de Toxicidad , Animales , Antioxidantes , Femenino , Ratones , Estrés Oxidativo , Conducta Social
13.
Chemosphere ; 181: 492-499, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28460296

RESUMEN

Previous studies involving the oral exposure of mice to tannery effluents have found neurotoxic effects. However, studies about the effects the dermal exposure to pollutant have on the cognitive function of females have not been found in the literature. Thus, the aim of the current study is to investigate whether the dermal exposure of female Swiss mice to tannery effluents (2 h/day for 20 days) can cause cognitive impairment, as it was already evidenced in male Swiss mice. Furthermore, based on the administration of vitamin C (before or after the exposure to the xenobiotic), the current study also aims to assess the protective effect of vitamin C in female Swiss mice dermally-exposed to the tannery effluent. Female Swiss mice exposed to the tannery effluent (without vitamin supplementation) have shown lower novel object recognition index during the test session of the novel object recognition task, and they have descended significantly faster from the inhibitory avoidance platform when they were compared to mice belonging to the other groups, therefore evidencing memory deficit. However, the test performance of females receiving vitamin C was similar to that of control animals. Thus, the current study confirms the initial hypothesis that the dermal exposure to the pollutant, even for a short period, causes cognitive deficit in female Swiss mice. The herein presented findings also provide evidence that the mechanisms of action of the tannery effluent in these animals are related to oxidative damages in specific brain regions directed to the formation of short memory to perform aversive and object recognition tasks.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Residuos Industriales/efectos adversos , Exposición Profesional/efectos adversos , Curtiembre , Administración Cutánea , Animales , Ácido Ascórbico/farmacología , Encéfalo/efectos de los fármacos , Femenino , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA