Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stand Genomic Sci ; 7(3): 382-98, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24019987

RESUMEN

Tropical forest soils decompose litter rapidly with frequent episodes of anoxia, making it likely that bacteria using alternate terminal electron acceptors (TEAs) such as iron play a large role in supporting decomposition under these conditions. The prevalence of many types of metabolism in litter deconstruction makes these soils useful templates for improving biofuel production. To investigate how iron availability affects decomposition, we cultivated feedstock-adapted consortia (FACs) derived from iron-rich tropical forest soils accustomed to experiencing frequent episodes of anaerobic conditions and frequently fluctuating redox. One consortium was propagated under fermenting conditions, with switchgrass as the sole carbon source in minimal media (SG only FACs), and the other consortium was treated the same way but received poorly crystalline iron as an additional terminal electron acceptor (SG + Fe FACs). We sequenced the metagenomes of both consortia to a depth of about 150 Mb each, resulting in a coverage of 26× for the more diverse SG + Fe FACs, and 81× for the relatively less diverse SG only FACs. Both consortia were able to quickly grow on switchgrass, and the iron-amended consortium exhibited significantly higher microbial diversity than the unamended consortium. We found evidence of higher stress in the unamended FACs and increased sugar transport and utilization in the iron-amended FACs. This work provides metagenomic evidence that supplementation of alternative TEAs may improve feedstock deconstruction in biofuel production.

2.
ISME J ; 7(12): 2301-14, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23887171

RESUMEN

Members of the genus Candidatus Accumulibacter are important in many wastewater treatment systems performing enhanced biological phosphorus removal (EBPR). The Accumulibacter lineage can be subdivided phylogenetically into multiple clades, and previous work showed that these clades are ecologically distinct. The complete genome of Candidatus Accumulibacter phosphatis strain UW-1, a member of Clade IIA, was previously sequenced. Here, we report a draft genome sequence of Candidatus Accumulibacter spp. strain UW-2, a member of Clade IA, assembled following shotgun metagenomic sequencing of laboratory-scale bioreactor sludge. We estimate the genome to be 80-90% complete. Although the two clades share 16S rRNA sequence identity of >98.0%, we observed a remarkable lack of synteny between the two genomes. We identified 2317 genes shared between the two genomes, with an average nucleotide identity (ANI) of 78.3%, and accounting for 49% of genes in the UW-1 genome. Unlike UW-1, the UW-2 genome seemed to lack genes for nitrogen fixation and carbon fixation. Despite these differences, metabolic genes essential for denitrification and EBPR, including carbon storage polymer and polyphosphate metabolism, were conserved in both genomes. The ANI from genes associated with EBPR was statistically higher than that from genes not associated with EBPR, indicating a high selective pressure in EBPR systems. Further, we identified genomic islands of foreign origins including a near-complete lysogenic phage in the Clade IA genome. Interestingly, Clade IA appeared to be more phage susceptible based on it containing only a single Clustered Regularly Interspaced Short Palindromic Repeats locus as compared with the two found in Clade IIA. Overall, the comparative analysis provided a genetic basis to understand physiological differences and ecological niches of Accumulibacter populations, and highlights the importance of diversity in maintaining system functional resilience.


Asunto(s)
Genoma Bacteriano , Fósforo/metabolismo , Aguas Residuales/microbiología , Biodiversidad , Reactores Biológicos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Desnitrificación , Metagenómica , Filogenia , ARN Ribosómico 16S/genética , Homología de Secuencia de Ácido Nucleico , Aguas del Alcantarillado/microbiología
3.
Environ Microbiol ; 14(9): 2405-16, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22616650

RESUMEN

The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability.


Asunto(s)
Lípidos , Contaminación por Petróleo , Petróleo/metabolismo , Microbiología del Agua , Alteromonadaceae/genética , Alteromonadaceae/aislamiento & purificación , Alteromonadaceae/metabolismo , Alteromonadaceae/ultraestructura , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Carga Bacteriana , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Guerra del Golfo , ARN Ribosómico 16S/genética
4.
Appl Environ Microbiol ; 72(9): 6299-315, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16957257

RESUMEN

The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H(+)-dependent F(0)F(1) type, one Na(+)-dependent V type).


Asunto(s)
Amoníaco/metabolismo , Chromatiaceae/genética , Chromatiaceae/metabolismo , Genoma Bacteriano , Adenosina Trifosfato/biosíntesis , Aminoácidos/metabolismo , Composición de Base , Carbono/metabolismo , Chromatiaceae/ultraestructura , Cromosomas Bacterianos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Transporte de Electrón , Metabolismo Energético , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Microscopía Electrónica , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Nitrógeno/metabolismo , Nucleótidos/metabolismo , Operón , Oxidación-Reducción , Fósforo/metabolismo , Plásmidos/genética , Secuencias Repetitivas de Ácidos Nucleicos , Agua de Mar/microbiología , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA