Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Biol Sci ; 290(1992): 20222374, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36750197

RESUMEN

The molecular regulation of sleep in avian migrants is still obscure. We thus investigated this in migratory redheaded buntings, where four life-history states (LHS; i.e. non-migratory, pre-migratory, migratory and refractory states) were induced. There was increased night-time activity (i.e. Zugunruhe) during the migratory state with reduced daytime activity. The recordings of the sleep-wake cycle in buntings showed increased night-time active wakefulness coupled with drastically reduced front and back sleep during migratory phase. Interestingly, we found the buntings to feed and drink even after lights-off during migration. Gene expression studies revealed increased hypothalamic expression of glucocorticoid receptor (nr3c1), and pro-inflammatory cytokines (il1b and il6) in pre-migratory and migratory states, respectively, whereas in brainstem Ca2+/calmodulin-dependent protein kinase 2 (camk2) was upregulated during the migratory state. This suggested a heightened pro-inflammatory state during migration which is a feature of chronic sleep loss, and a possible role of Ca2+ signalling in promoting wakefulness. In both the hypothalamus and brainstem, the expression of melatonin receptors (mel1a and mel1b) was increased in the pre-migratory state, and growth hormone-releasing hormone (ghrh, known to induce sleep) was reduced during the migratory state. The current results demonstrate key molecules involved in the regulation of sleep-wake cycle across LHS in migratory songbirds.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Fotoperiodo , Estaciones del Año , Hipotálamo/metabolismo , Passeriformes/fisiología , Pájaros Cantores/fisiología , Tronco Encefálico , Sueño , Migración Animal/fisiología
2.
Cancer Lett ; 527: 80-94, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34906624

RESUMEN

The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.


Asunto(s)
Neoplasias/epidemiología , Relojes Circadianos , Humanos , Incidencia
3.
Sci Rep ; 11(1): 12823, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140553

RESUMEN

We investigated time course of photoperiodically driven transcriptional responses in physiologically contrasting seasonal life-history states in migratory blackheaded buntings. Birds exhibiting unstimulated winter phenotype (photosensitive state; responsive to photostimulation) under 6-h short days, and regressed summer phenotype (photorefractory state; unresponsiveness to photostimulation) under 16-h long days, were released into an extended light period up to 22 h of the day. Increased tshß and dio2, and decreased dio3 mRNA levels in hypothalamus, and low prdx4 and high il1ß mRNA levels in blood confirmed photoperiodic induction by hour 18 in photosensitive birds. Further, at hours 10, 14, 18 and 22 of light exposure, the comparison of hypothalamus RNA-Seq results revealed transcriptional differences within and between states. Particularly, we found reduced expression at hour 14 of transthyretin and proopiomelanocortin receptor, and increased expression at hour 18 of apolipoprotein A1 and carbon metabolism related genes in the photosensitive state. Similarly, valine, leucine and isoleucine degradation pathway genes and superoxide dismutase 1 were upregulated, and cocaine- and amphetamine-regulated transcript and gastrin-releasing peptide were downregulated in the photosensitive state. These results show life-history-dependent activation of hypothalamic molecular pathways involved in initiation and maintenance of key biological processes as early as on the first long day.


Asunto(s)
Migración Animal/fisiología , Hipotálamo/metabolismo , Estadios del Ciclo de Vida/genética , Fotoperiodo , Estaciones del Año , Pájaros Cantores/genética , Transcripción Genética , Transcriptoma/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , RNA-Seq , Pájaros Cantores/fisiología , Factores de Tiempo
4.
Eur J Neurosci ; 53(2): 430-448, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33010037

RESUMEN

In latitudinal avian migrants, increasing photoperiods induce fat deposition and body mass increase, and subsequent night-time migratory restlessness in captive birds, but the underlying mechanisms remain poorly understood. We hypothesized that an enhanced hypothalamic neuronal plasticity was associated with the photostimulated spring migration phenotype. We tested this idea in adult migratory red-headed buntings (Emberiza bruniceps), as compared with resident Indian weaverbirds (Ploceus philippinus). Birds were exposed to a stimulatory long photoperiod (14L:10D, LP), while controls were kept on a short photoperiod (10L:14D, SP). Under both photoperiods, one half of birds also received a high calorie, protein- and fat-rich diet (SP-R, LP-R) while the other half stayed on the normal diet (SP-N, LP-N). Thirty days later, as expected, the LP had induced multiple changes in the behaviour and physiology in migratory buntings. Photostimulated buntings also developed a preference for the rich food diet. Most interestingly, the LP and the rich diet, both separately and in association, increased neurogenesis in the mediobasal hypothalamus (MBH), as measured by an increased number of cells immunoreactive for doublecortin (DCX), a marker of recently born neurons, in buntings, but not weaverbirds. This neurogenesis was associated with an increased density of fibres immunoreactive for the orexigenic neuropeptide Y (NPY). This hypothalamic plasticity observed in a migratory, but not in a non-migratory, species in response to photoperiod and food quality might represent an adaptation to the pre-migratory fattening, as required to support the extensive energy expenses that incur during the migratory flight.


Asunto(s)
Fotoperiodo , Pájaros Cantores , Migración Animal , Animales , Calidad de los Alimentos , Hipotálamo , Estaciones del Año
5.
Brain Struct Funct ; 225(9): 2775-2798, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33141294

RESUMEN

This study tested the hypothesis whether hypothalamic cocaine-and amphetamine-regulated transcript (CART)-containing systems were involved in photoperiod-induced responses associated with spring migration (hyperphagia and weight gain) and reproduction (gonadal maturation) in migratory songbirds. We specifically chose CART to examine neural mechanism(s) underlying photoperiod-induced responses, since it is a potent anorectic neuropeptide and involved in the regulation of changes in the body mass and reproduction in mammals. We first studied the distribution of CART-immunoreactivity in the hypothalamus of migratory redheaded buntings (Emberiza bruniceps). CART-immunoreactive neurons were found extensively distributed in the preoptic, lateral hypothalamic (LHN), anterior hypothalamic (AN), suprachiasmatic (SCN), paraventricular (PVN), dorsomedialis hypothalami (DMN), inferior hypothalamic (IH), and infundibular (IN) nuclei. Then, we correlated hypothalamic CART-immunoreactivity in buntings with photostimulated seasonal states, particularly winter non-migratory/non-breeding (NMB) state under short days, and spring premigratory/pre-breeding (PMB) and migratory/breeding (MB) states under long days. There were significantly increased CART-immunoreactive cells, and percent fluorescent area of CART-immunoreactivity was significantly increased in all mapped hypothalamic areas, except the SCN, PVN, AN, and DMN in photostimulated PMB and MB states, as compared to the non-stimulated NMB state. In particular, CART was richly expressed in the medial preoptic nucleus, LHN, IH and IN during MB state in which buntings showed reduced food intake and increased night-time activity. These results suggest that changes in the activity of the CART-containing system in different brain regions were associated with heightened energy needs of the photoperiod-induced seasonal responses during spring migration and reproduction in migratory songbirds.


Asunto(s)
Migración Animal , Proteínas Aviares/fisiología , Hipotálamo/fisiología , Proteínas del Tejido Nervioso/fisiología , Fotoperiodo , Gorriones/fisiología , Animales , Masculino , Fenotipo , Estaciones del Año
6.
Mol Cell Endocrinol ; 508: 110794, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32205144

RESUMEN

We investigated gonadal effects on hypothalamic transcription of genes in sham-operated and castrated redheaded buntings photostimulated into spring and autumn migratory states. RNA-Seq results showed testes-dependent differences between spring and autumn migratory states. In particular, differentially expressed genes enriched G-protein-coupled receptor and calcium-ion signaling pathways during spring and autumn states, respectively. qPCR assay showed attenuated gabra5, ttr, thra and thrb expressions, suggesting reduced GABA and thyroid hormone effects on photo-sexual response in spring. In spring castrates, reduced npy, tac1 and nrcam and increased ank3 expression suggested testicular effects on the appetite, prolactin release and neuronal functions, whereas in autumn castrates, reduced rasgrp1, grm5 and grin1, and increased mras expression suggested testicular effects on the ras, G-protein and glutamate signaling pathways. Castration-induced reciprocal switching of pomc and pdyn expressions suggested effects on the overall homeostasis in both seasons. These results demonstrate transcriptome-wide changes, with season-dependent roles of testes in songbird migration.


Asunto(s)
Migración Animal/fisiología , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Reproducción/genética , Estaciones del Año , Pájaros Cantores/genética , Pájaros Cantores/fisiología , Migración Animal/efectos de la radiación , Animales , Conducta Animal/efectos de la radiación , Peso Corporal/efectos de la radiación , Castración , Regulación de la Expresión Génica/efectos de la radiación , Hipotálamo/efectos de la radiación , Luz , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/efectos de la radiación , Testosterona/sangre , Transcriptoma/genética , Triyodotironina/sangre
7.
Proc Biol Sci ; 285(1885)2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158302

RESUMEN

We hypothesized differences in molecular strategies for similar journeys that migrants undertake to reproduce in spring and to overwinter in autumn. We tested this in redheaded buntings (Emberiza bruniceps) photoinduced into spring and autumn migratory states, with winter and summer non-migratory states as controls. Compared with controls, buntings fattened, gained weight and showed Zugunruhe (nocturnal migratory restlessness) in the migratory state. Spring migration was associated with greater fat and body mass, and higher intensity of Zugunruhe, compared with autumn migration. Circulating corticosterone levels were higher in spring, while T3 levels were higher in autumn. Hypothalamic expression of thyroid hormone-responsive (dio2, dio3), light-responsive (per2, cry1, adcyap1) and th (tyrosine hydroxylase, involved in dopamine biosynthesis) genes showed significant changes with transition from non-migratory to the migratory state. There were significantly higher mRNA expressions in autumn, except for higher th levels in the spring. Furthermore, the expression patterns of dnmt3a (not dnmt3b) and tet2 genes suggested an epigenetic difference between the non-migrant and migrant periods, and the spring and autumn migrant periods. These results demonstrate for the first time seasonal transition in hypothalamic gene expressions, and suggest differences in regulatory strategies at the transcriptional level for spring and autumn migrations in songbirds.


Asunto(s)
Migración Animal , Proteínas Aviares/genética , Expresión Génica , Hipotálamo/metabolismo , Pájaros Cantores/fisiología , Animales , Proteínas Aviares/metabolismo , Masculino , Estaciones del Año , Pájaros Cantores/genética
8.
Mol Cell Endocrinol ; 439: 81-94, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27789391

RESUMEN

Hypothalamic expression of the thyroid hormone (TH) responsive gonadostimulatory (eya3, cga, tshß, dio2, dio3, gnrh, gnih) and neurosteroid pathway genes (androgen receptor [ar], aromatase [cyp19], estrogen receptor [er] α and ß) was examined in photosensitive redheaded buntings exposed to 2 (acute, experiment 1) or 12 (chronic, experiment 2) long days (16L:8D). Experiment 2 also included a photorefractory group. Acute long days caused a significant increase in eya3, cga, tshß, dio2 and gnrh and decrease in dio3 mRNA levels. eya3, cga and tshß expressions were unchanged after the chronic long days. We also found increased cyp19, erα and erß mRNA levels after acute, and increased cyp19 and decreased erß levels after the chronic long-day exposure. Photorefractory buntings showed expression patterns similar to that in the photosensitive state, except for high gnrh and gnih and low dio3 mRNA levels. Consistent with gene expression patterns, there were changes in fat deposition, body mass, testis size, and plasma levels of testosterone, tri-iodothyronine and thyroxine. These results show concurrent photostimulation of the TH-signalling and neurosteroid pathways, and extend the idea, based on differences in gene expression, that transitions in seasonal photoperiodic states are accomplished at the transcriptional levels in absolute photorefractory species.


Asunto(s)
Migración Animal/fisiología , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Fotoperiodo , Pájaros Cantores/genética , Pájaros Cantores/fisiología , Animales , Gónadas/metabolismo , Hormonas/sangre , Modelos Biológicos , Transducción de Señal/genética , Esteroides/metabolismo
9.
Gen Comp Endocrinol ; 230-231: 67-75, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27038875

RESUMEN

Present study examined the expression of brain peptides associated with the reproduction and energy homeostasis (GnRH/GnIH, NPY/VIP), and assessed their possible functional association in the photosensitive (non-breeding, pre-breeding), photostimulated (breeding) and photorefractory (post-breeding) migratory redheaded buntings (Emberiza bruniceps), using double-labeled immunohistochemistry. Particularly, we measured immunoreactive (-ir) cell numbers, per cent cell area and cell optical density (OD) in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), dorsomedial hypothalamus, DMH and infundibular complex, INc (NPY and VIP), and lateral septal organ (VIP) of buntings kept under natural photoperiods at the wintering latitude (26°55'N). There was a significant seasonal difference in GnRH-I, not GnRH-II, with reduced -ir cells in the photosensitive and photorefractory buntings, and notably with increased cell OD between the refractory and non-breeding states with no increase in testis size. Also, increased cell OD of GnIH neurons in non-breeding state indicated its role in the maintenance of small testes during the post-refractory period. Overall, seasonal changes in GnRH-I and GnIH were found consistent with their suggested roles in reproductive regulation of absolute photorefractory birds. Further, there was a significant seasonal change in cell OD of NPY neurons in DMH, not the INc. In contrast, VIP immunoreactivity was seasonally altered, with a significantly higher VIP-ir cells in breeding than the pre-breeding state. Finally, close proximity between perikarya with fibres suggested functional interactions between the GnRH and GnIH, and NPY and VIP. Thus, seasonal plasticity of brain peptides is perhaps the part of neural regulation of seasonal reproduction and associated energy homeostasis in migratory songbirds.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Hormona Liberadora de Gonadotropina/análogos & derivados , Homeostasis/efectos de la radiación , Precursores de Proteínas/metabolismo , Reproducción/fisiología , Pájaros Cantores/fisiología , Migración Animal/efectos de la radiación , Animales , Encéfalo/citología , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Hipotálamo/efectos de la radiación , Inmunohistoquímica , Masculino , Neuronas/metabolismo , Fotoperiodo , Área Preóptica/citología , Área Preóptica/metabolismo , Área Preóptica/efectos de la radiación , Reproducción/efectos de la radiación , Estaciones del Año
10.
Physiol Behav ; 156: 156-63, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26801391

RESUMEN

In songbirds, the pineal gland is part of the multi-oscillatory circadian timing system, with participating component oscillators in the eyes and hypothalamus. This study investigated the role of the pineal gland in development of the nighttime migratory restlessness (Zugunruhe) and generation of circadian gene oscillations in the retina, brain and liver tissues in migratory redheaded buntings (Emberiza bruniceps). Pinealectomized (pinx) and sham-operated buntings entrained to short days (8h light: 16h darkness, 8L:16D) were sequentially exposed for 10days each to stimulatory long days (13L: 11D) and constant dim light (LLdim; a condition that tested circadian rhythm persistence). Whereas activity-rest pattern was monitored continuously, the mRNA expressions of clock genes (bmal1, clock, npas2, per2, cry1, rorα, reverα) were measured in the retina, hypothalamus, telencephalon, optic tectum and liver tissues at circadian times, CT, 1, 6, 13, 17 and 21 (CT 0, activity onset) on day 11 of the LLdim. The absence of the pineal gland did not affect the development of long-day induced Zugunruhe but caused decay of the circadian rhythm in Zugunruhe as well as the clock gene oscillations in the hypothalamus, but not in the retina. Further, there were variable effects of pinealectomy in the peripheral brain and liver tissue circadian gene oscillations, notably the persistence of per 2 and cry1 (optic tectum), rorα (telencephalon) and npas2 (liver) mRNA oscillations in pinx birds. We suggest the pineal gland dependence of the generation of circadian gene oscillations in the hypothalamus, not retina, and peripheral brain and liver tissues in migratory redheaded buntings.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano , Glándula Pineal/fisiología , Pájaros Cantores/fisiología , Factores de Transcripción ARNTL/genética , Animales , Encéfalo/metabolismo , Relojes Circadianos/genética , Hipotálamo/metabolismo , Hígado/metabolismo , Masculino , Fotoperiodo , Glándula Pineal/cirugía , Retina , Pájaros Cantores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA