Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Health Sci Eng ; 21(2): 497-512, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37869604

RESUMEN

Nowadays, public concern is focused on the degradation of water quality. For this reason, the development of innovative technologies for water treatment in view of (micro)pollutant removal is important. Indeed, organic (micro)pollutants, such as pharmaceuticals, herbicides, pesticides and plasticizers at concentration levels of µg L-1 or even ng L-1 are hardly removed during conventional wastewater treatment. In view of this, thermo-plasma expanded graphite, a light-weight innovative material in the form of a powder, was encapsulated into calcium alginate to obtain a granular form useful as filtration and adsorption material for removal of different pollutants. The produced material was used to remove atrazine, bisphenol-A, 17-α-ethinylestradiol and carbamazepine (at concentration levels of 125, 250 and 500 µg L-1) by top-down filtration. The effect of flow rate, bed depth and adsorbent composition was evaluated based on breakthrough curves. The experimental data was analysed with the Adams-Bohart model in view of scale-up. Under optimal conditions, removal and adsorption capacity of respectively about 21%, 21%, 38%,42%, 43 µg g-1, 44 µg g-1, 37 µg g-1 and 87 µg g-1 were obtained for atrazine, bisphenol, 17-α ethinylestradiol and carbamazepine when using 0.12 g of thermo-plasma expanded graphite to treat 200 mL at 500 µg L-1 (for each compound) of solution obtaining at contact time of 20 min. The granular form of TPEG obtained (GTPEG) by entrapping in calcium alginate results to have a good adsorbent property for the removal of carbamazepine, atrazine, bisphenol A and 17-α ethinylestradiol from water at concentration levels between 250 and 500 µg L-1. Promising results confirm the adsorbent properties of TPEG and push-up us to investigate on its application and improve of its performance by evaluating different entrapping materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-023-00876-9.

2.
Sci Total Environ ; 800: 149393, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426347

RESUMEN

Soil contamination is a worldwide problem, mainly caused by a wide range of organic compounds: e.g., alkanes, aromatics, and polynuclear aromatics. Using ozone to help remediate contaminated soils is gaining interest due to its capability in oxidizing recalcitrant contaminants in short application time., although studies using ozonation for soil remediation are so far limited to the laboratory scale. This review attempts to summarize and discuss the state of the art in the treatment of soils contaminated with recalcitrant organic contaminants by using ozone, emphasizing the influence of operating conditions, such as the content and age of soil organic matter, grain size, moisture content, pH, and ozone dose. Special attention is given to the combination of ozonation and biodegradation. The main advantages in using ozonation as a remediation technique are its high oxidation potential applicable to a wide range of organic pollutants and its oxygen release after chemical decomposition that allow aerobic biodegradation. The review results show that ozonated soils can be reused after ozonation treatment, therefore ozonation can be considered an excellent remediation technique, even if combined with biodegradation, allowing removal percentages of 90% and more.


Asunto(s)
Contaminantes Ambientales , Ozono , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA