Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Trop ; 240: 106858, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36750152

RESUMEN

Mosquitoes cause serious health hazards for millions of people across the globe by acting as vectors of deadly communicable diseases like malaria, filariasis, dengue and yellow fever. Use of conventional chemical insecticides to control mosquito vectors has led to the development of biological resistance in them along with adverse environmental consequences. In this light, the recent years have witnessed enormous efforts of researchers to develop eco-friendly and cost-effective alternatives with special emphasis on plant-derived mosquitocidal compounds. Neem oil, derived from neem seeds (Azadirachta indica A. Juss, Meliaceae), has been proved to be an excellent candidate against a wide range of vectors of medical and veterinary importance including mosquitoes. It is environment-friendly, and target-specific at the same time. The active ingredients of neem oil include limonoids like azadirachtin A, nimbin, salannin and numerous other substances that are still waiting to be discovered. Of these, azadirachtin has been shown to be very effective and is mainly responsible for its toxic effects. The quality of the neem oil depends on its azadirachtin content which, in turn, depends on its manufacturing process. Neem oil can be used directly or as nanoemulsions or nanoparticles or even in the form of effervescent tablets. When added to natural breeding habitat waters they exert their mosquitocidal effects by acting as ovicides, larvicides, pupicides and/or oviposition repellents. The effects are generated by impairing the physiological pathways of the immature stages of mosquitoes or directly by causing physical deformities that impede their development. Neem oil when used directly has certain disadvantages mainly related to its disintegration under atmospheric conditions rendering it ineffective. However, many of its formulations have been reported to remain stable under environmental conditions retaining its efficiency for a long time. Similarly, neem seed cake has also been found to be effective against the mosquito vectors. The greatest advantage is that the target species do not develop resistance against neem-based products mainly because of the innumerable number of chemicals present in neem and their combinations. This makes neem-based products highly potential yet unexplored candidates of mosquito control agents. The current review helps to elucidate the roles of neem oil and its various derivatives on mosquito vectors of public health concern.


Asunto(s)
Azadirachta , Insecticidas , Plaguicidas , Humanos , Animales , Femenino , Plaguicidas/farmacología , Azadirachta/química , Control de Mosquitos , Fitomejoramiento , Insecticidas/farmacología , Extractos Vegetales/farmacología , Larva
2.
J Cancer Res Ther ; 13(3): 491-497, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28862215

RESUMEN

AIM OF STUDY: To establish trends of estimation error of dose calculation by anisotropic analytical algorithm (AAA) with respect to dose measured by thermoluminescent dosimeters (TLDs) in air-water heterogeneity for small field size photon. MATERIALS AND METHODS: TLDs were irradiated along the central axis of the photon beam in four different solid water phantom geometries using three small field size single beams. The depth dose profiles were estimated using AAA calculation model for each field sizes. The estimated and measured depth dose profiles were compared. RESULTS: The over estimation (OE) within air cavity were dependent on field size (f) and distance (x) from solid water-air interface and formulated as OE = - (0.63 f + 9.40) x2+ (-2.73 f + 58.11) x + (0.06 f2 - 1.42 f + 15.67). In postcavity adjacent point and distal points from the interface have dependence on field size (f) and equations are OE = 0.42 f2 - 8.17 f + 71.63, OE = 0.84 f2 - 1.56 f + 17.57, respectively. CONCLUSION: The trend of estimation error of AAA dose calculation algorithm with respect to measured value have been formulated throughout the radiation path length along the central axis of 6 MV photon beam in air-water heterogeneity combination for small field size photon beam generated from a 6 MV linear accelerator.


Asunto(s)
Neoplasias/radioterapia , Fotones/uso terapéutico , Radiometría/normas , Dosificación Radioterapéutica/normas , Algoritmos , Anisotropía , Humanos , Método de Montecarlo , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Dosímetros de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Dosimetría Termoluminiscente , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA