Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Med Biol ; 68(17)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37531961

RESUMEN

Objective.Non-invasive functional brain imaging modalities are limited in number, each with its own complex trade-offs between sensitivity, spatial and temporal resolution, and the directness with which the measured signals reflect neuronal activation. Magnetic particle imaging (MPI) directly maps the cerebral blood volume (CBV), and its high sensitivity derives from the nonlinear magnetization of the superparamagnetic iron oxide nanoparticle (SPION) tracer confined to the blood pool. Our work evaluates functional MPI (fMPI) as a new hemodynamic functional imaging modality by mapping the CBV response in a rodent model where CBV is modulated by hypercapnic breathing manipulation.Approach.The rodent fMPI time-series data were acquired with a mechanically rotating field-free line MPI scanner capable of 5 s temporal resolution and 3 mm spatial resolution. The rat's CBV was modulated for 30 min with alternating 5 min hyper-/hypocapnic states, and processed using conventional fMRI tools. We compare our results to fMRI responses undergoing similar hypercapnia protocols found in the literature, and reinforce this comparison in a study of one rat with 9.4T BOLD fMRI using the identical protocol.Main results.The initial image in the time-series showed mean resting brain voxel SNR values, averaged across rats, of 99.9 following the first 10 mg kg-1SPION injection and 134 following the second. The time-series fit a conventional General Linear Model with a 15%-40% CBV change and a peak pixel CNR between 12 and 29, 2-6× higher than found in fMRI.Significance.This work introduces a functional modality with high sensitivity, although currently limited spatial and temporal resolution. With future clinical-scale development, a large increase in sensitivity could supplement other modalities and help transition functional brain imaging from a neuroscience tool focusing on population averages to a clinically relevant modality capable of detecting differences in individual patients.


Asunto(s)
Circulación Cerebrovascular , Hipercapnia , Ratas , Animales , Hipercapnia/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Fenómenos Magnéticos , Mapeo Encefálico
2.
Resuscitation ; 83(10): 1292-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22370005

RESUMEN

AIM OF THE STUDY: Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. Previously we demonstrated that administration of sodium sulfide (Na(2)S), a hydrogen sulfide (H(2)S) donor, markedly improved the neurological outcome and survival rate at 24 h after CA and cardiopulmonary resuscitation (CPR) in mice. In this study, we sought to elucidate the mechanism responsible for the neuroprotective effects of Na(2)S and its impact on the long-term survival after CA/CPR in mice. METHODS: Adult male mice were subjected to potassium-induced CA for 7.5 min at 37°C whereupon CPR was performed with chest compression and mechanical ventilation. Mice received Na(2)S (0.55 mgkg(-1) i.v.) or vehicle 1 min before CPR. RESULTS: Mice that were subjected to CA/CPR and received vehicle exhibited a poor 10-day survival rate (4/12) and depressed neurological function. Cardiac arrest and CPR induced abnormal water diffusion in the vulnerable regions of the brain, as demonstrated by hyperintense diffusion-weighted imaging (DWI) 24 h after CA/CPR. Extent of hyperintense DWI was associated with matrix metalloproteinase 9 (MMP-9) activation, worse neurological outcomes, and poor survival rate at 10 days after CA/CPR. Administration of Na(2)S prevented the development of abnormal water diffusion and MMP-9 activation and markedly improved neurological function and long-term survival (9/12, P<0.05 vs. Vehicle) after CA/CPR. CONCLUSION: These results suggest that administration of Na(2)S 1 min before CPR improves neurological function and survival rate at 10 days after CA/CPR by preventing water diffusion abnormality in the brain potentially via inhibiting MMP-9 activation early after resuscitation.


Asunto(s)
Encéfalo/fisiopatología , Reanimación Cardiopulmonar , Paro Cardíaco/fisiopatología , Paro Cardíaco/terapia , Sulfuros/uso terapéutico , Animales , Difusión , Paro Cardíaco/mortalidad , Masculino , Ratones , Ratones Endogámicos C57BL , Tasa de Supervivencia , Resultado del Tratamiento
3.
Circulation ; 124(15): 1645-53, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21931083

RESUMEN

BACKGROUND: Sudden cardiac arrest (CA) is a leading cause of death worldwide. Breathing nitric oxide (NO) reduces ischemia/reperfusion injury in animal models and in patients. The objective of this study was to learn whether inhaled NO improves outcomes after CA and cardiopulmonary resuscitation (CPR). METHODS AND RESULTS: Adult male mice were subjected to potassium-induced CA for 7.5 minutes whereupon CPR was performed with chest compression and mechanical ventilation. One hour after CPR, mice were extubated and breathed air alone or air supplemented with 40 ppm NO for 23 hours. Mice that were subjected to CA/CPR and breathed air exhibited a poor 10-day survival rate (4 of 13), depressed neurological and left ventricular function, and increased caspase-3 activation and inflammatory cytokine induction in the brain. Magnetic resonance imaging revealed brain regions with marked water diffusion abnormality 24 hours after CA/CPR in mice that breathed air. Breathing air supplemented with NO for 23 hours starting 1 hour after CPR attenuated neurological and left ventricular dysfunction 4 days after CA/CPR and markedly improved 10-day survival rate (11 of 13; P=0.003 versus mice breathing air). The protective effects of inhaled NO on the outcome after CA/CPR were associated with reduced water diffusion abnormality, caspase-3 activation, and cytokine induction in the brain and increased serum nitrate/nitrite levels. Deficiency of the α1 subunit of soluble guanylate cyclase, a primary target of NO, abrogated the ability of inhaled NO to improve outcomes after CA/CPR. CONCLUSIONS: These results suggest that NO inhalation after CA and successful CPR improves outcome via soluble guanylate cyclase-dependent mechanisms.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco/terapia , Óxido Nítrico/administración & dosificación , Administración por Inhalación , Aire , Animales , Apoptosis , Presión Sanguínea , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Caspasa 3/metabolismo , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Difusión , Activación Enzimática/efectos de los fármacos , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Corazón/efectos de los fármacos , Corazón/fisiopatología , Paro Cardíaco/mortalidad , Paro Cardíaco/patología , Paro Cardíaco/fisiopatología , Mediadores de Inflamación/antagonistas & inhibidores , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Nervioso/fisiopatología , Nitratos/sangre , Nitritos/sangre , Respiración , Solubilidad , Tasa de Supervivencia , Factores de Tiempo , Función Ventricular Izquierda , Función Ventricular Derecha , Agua/metabolismo
4.
Neuroscientist ; 14(5): 503-20, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18024855

RESUMEN

Altered gene activities are underlying causes of many neurological disorders. The ability to detect, image, and report endogenous gene transcription using magnetic resonance (MR) holds great potential for providing significant clinical benefits. In this review, we present the development of conjugates consisting of gene-targeting short nucleic acids (oligodeoxynucleotides, or sODN) and superparamagnetic iron oxide nanoparticles (SPION, an MR susceptibility T(2) agent) for reporting gene activity using transcription MRI (tMRI). We will discuss 1) the target specificity of sODN, 2) selection of contrast agents for tMRI, 3) the distribution and uptake, 4) sequence specificity, 5) histology of SPION and sODN, 6) data acquisition and quantitative analysis for tMRI, and 7) application of gene transcript-targeting nanoparticles in biology and medicine. We will also discuss methods of validating the correlation between results from conventional assays (in situ hybridization, PCR, histology Prussian blue stain and immunohistochemistry) in postmortem samples and retention of SPION-sODN using tMRI. The application of our novel contrast probe to report and target gene transcripts in the mesolimbic pathways of living mouse brains after amphetamine exposure will be discussed. Because of the targeting ability in the nucleic acid sequence, the concept of tMRI probes with complementary nucleic acid (antisense DNA or short interfering RNA) allows not only tracking, targeting, binding to intracellular mRNA, and manipulating gene action but also tracing cells with specific gene action in living brains. Transcription MRI will lend itself to myriad applications in living organs.


Asunto(s)
Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Transcripción Genética , Encéfalo/anatomía & histología , Química Encefálica/genética , Mapeo Encefálico/métodos , Medios de Contraste/normas , Marcación de Gen , Humanos , Imagen por Resonancia Magnética/tendencias , Nanopartículas/normas , Sondas de Oligonucleótidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA