Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 618(7964): 316-321, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225981

RESUMEN

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Asunto(s)
Biodiversidad , Productos Agrícolas , Restauración y Remediación Ambiental , Aceite de Palma , Árboles , Bosques , Aceite de Palma/provisión & distribución , Árboles/fisiología , Agricultura/métodos , Naciones Unidas , Clima Tropical , Productos Agrícolas/provisión & distribución , Restauración y Remediación Ambiental/métodos
2.
PLoS One ; 11(7): e0160179, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27463805

RESUMEN

Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs.


Asunto(s)
Amoeba/fisiología , Biodiversidad , Biomasa , Producción de Cultivos , Bosque Lluvioso , Amoeba/aislamiento & purificación , Conservación de los Recursos Naturales , Hevea/crecimiento & desarrollo , Aceite de Palma , Aceites de Plantas
3.
ISME J ; 8(5): 1126-34, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24285360

RESUMEN

We investigated the response of soil microbial communities in tropical ecosystems to increased nutrient deposition, such as predicted by anthropogenic change scenarios. Moderate amounts of nitrogen and phosphorus and their combination were added along an altitudinal transect. We expected microorganisms and microbial grazers (testate amoebae) to significantly respond to nutrient additions with the effect increasing with increasing altitude and with duration of nutrient additions. Further, we expected nutrients to alter grazer-prey interrelationships. Indeed, nutrient additions strongly altered microbial biomass (MB) and community structure as well as the community structure of testate amoebae. The response of microorganisms varied with both altitude and duration of nutrient addition. The results indicate that microorganisms are generally limited by N, but saprotrophic fungi also by P. Also, arbuscular mycorrhizal fungi benefited from N and/or P addition. Parallel to MB, testate amoebae benefited from the addition of N but were detrimentally affected by P, with the addition of P negating the positive effect of N. Our data suggests that testate amoeba communities are predominantly structured by abiotic factors and by antagonistic interactions with other microorganisms, in particular mycorrhizal fungi, rather than by the availability of prey. Overall, the results suggest that the decomposer system of tropical montane rainforests significantly responds to even moderate changes in nutrient inputs with the potential to cause major ramifications of the whole ecosystem including litter decomposition and plant growth.


Asunto(s)
Ecosistema , Eucariontes/metabolismo , Hongos/metabolismo , Micorrizas/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Microbiología del Suelo , Biomasa , Ecuador , Eucariontes/clasificación , Eucariontes/crecimiento & desarrollo , Hongos/clasificación , Hongos/crecimiento & desarrollo , Suelo
4.
PLoS One ; 7(10): e47128, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071734

RESUMEN

Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha(-1) yr(-1)) and P (10 kg ha(-1) yr(-1)). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some processes-notably aboveground productivity--are limited by both N and P. Highly variable and partly contrasting responses of different tree species suggest marked changes in species composition and diversity of these forests by nutrient inputs in the long term. The unexpectedly fast response of the ecosystem to moderate nutrient additions suggests high vulnerability of tropical montane forests to the expected increase in nutrient inputs.


Asunto(s)
Ecosistema , Nitrógeno/farmacología , Fósforo/farmacología , Árboles , Biomasa , Ecuador , Fertilizantes , Hojas de la Planta , Raíces de Plantas , Suelo , Árboles/crecimiento & desarrollo , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA